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PREFACE

Le but de ce Special Course est de présenter, de fagon aussi compléte que possible, I'état actuel des connaissances
sur les phénoménes et sur les moyens de prévision de la transition du laminaire au turbulent.

Une description générale des phénoménes et une analyse de Pinfluence des facteurs affectant la transition sont
d’abord présentées dans le cas des écoulements bidimensionnels de fluide incompressible,

Une étude approfondie de la théorie d’instabilité laminaire est développée ensuite, portant successivement sur les
écoulements bidimensionnels incompressible et compressible et sur les couches limites tridimensionnelles.

Une revue spéciale des résultats pour la transition en tridimensionnel est également présentée aussi bien du point
de vue de Pinstabilité transversale que des problémes de contamination qui peuvent apparaitre sur le bord d’attaque des
ailes en fléche.

On considére également les mécanismes non linéaires et le probléme des instabilités secondaires.

D’autres aspects importants des problémes de transition sont enfin examinés, comme la transition dans les couches
de cisaillement libre, la réceptivité de la couche limite aux perturbations extérieures, le contrdle d’écoulement laminaire,

la simulation visqueuse en soufflerie.

This Lecture Series is sponsored by the Fluid Dynamics Panel of AGARD and implemented by the von Kdrmin
Institute.

R.MICHEL
Lecture Series Director
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DESCRIPTION AND PREDICTION OF TRANSITION
IN TWO-DIMENSIONAL, INCOMPRESSIBLE FLOW

SUMMARY

by
Daniel ARNAL

Office National d'Etudes et de Recherches A&rospatiales (ONERA)

Centre d'Etudes et de Recherches de TOULOUSE

2 avenue Edouard Belin
31055 TOULOUSE Cedex - FRANCE

This paper deals with a survey of transition problems in two-dimensional, incompressible flows.
The first chapter is devoted to a general description of phenomena leading to turbulence under the influence

of various factors :

free-stream turbulence, sound, pressure gradient, oscillations of the external flow,

roughness, suction, wall curvature., Then, linear and non linear stability theories are briefly discussed.
This chapter ends with a review of results concerning the structure and growth of turbulent spots and the
progressive disappearance of intermittency phenomenon when positive pressure gradients are applied. The
second chapter describes practical methods for calculating the transition onset as well as the transition
region itself. Methods based on linear stability theory, empirical criteria, intermittency methods and
turbulence models are presented successively. Some applications of these techniques are also given.

MAIN NOTATIONS

X streamwise direction
y direction normal to the wall
spanwise direction
u(t) = U + u'
v(t) =V + ¥' instantaneous velocities in the x, y, z directions
w(t) =W+ w'
u, v, W mean velocities in the %, y, z directions
ah, v', w' fluctuations in the x, y, z directions
u', v', w' root-mean-square values of d', v', W'
4, ¢, & velocity components describing steady streamwise vortices (GURTLER)
u'v' Reynolds shear stress : time-averaged value of U' ¥'
P mean static pressure
time
Ce skin friction coefficient
H = 81/6 shape factor
VT 12,72
(u')e (Vu' 4y ey )e
T = T or free-stream turbulence level
e Y3 U
e
§ boundary layer thickness
8
81 =./” (1 - %L)dy displacement thickness
2 e
6 = §u (1 - lL)dy momentum thickness
5 U Ug
A—ezﬂe 1
2V dx POHLHAUSEN's parameter
kinematic viscosity
density
Uax
= Ue
Rx S
UgS
RS1 = ~%7£ Reynolds numbers
U.0
Zed
RO S

Subscripts

cr critical

e free-gtream
2 laminar

s separation
t turbulent

T transition
o0

upstream
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CHAPTER I
GENERAL DESCRIPTION OF TRANSITION
IN TWO-DIMENSIONAL, INCOMPRESSIBLE FLOW

1 — INTRODUCTION

Since the classical experiments performed by Osborne REYNOLDS (1883), the instability of laminar
flows and the transition to turbulence have maintained a constant interest in fluid mechanics problems.
This interest results from the fact that transition controls important hydrodynamic quantities such as
drag or heat transfer: The present paper is devoted to a general survey of transition phenomena, in two-
dimensional, incompressible flows.

An overall picture of the boundary layer development is given on figure 1. From the leading edge
to a certain distance xp, the flow remains laminar ; in the zero pressure gradient case, for instance, the
shape factor is constant and equal to the BLASIUS value 2.591. At xp, turbulent structures appear and
transition occurs. From Xp LO Xp, there is a noticeable change in the boundary layer properties : the pro-
cess of transition involves a large increase in the momentum thickness 6 and a large decrease in the shape
factor. As a result, the displacement thickness 81 = HO exhibits a more complex evolution. The skin fric-
tion coefficient increases from a laminar value to a turbulent one, the latter being in some cases an or-
der of magnitude greater than the former. It is obvious that the location and the extent of the transition
depend on a large range of parameters, such as external disturbances, vibrations, pressure gradient, rough-
ness, suction or blowing, wall curvature

In fact, two problems have to be studied :

a) What are the mechanisms leading to turbulence ? As long as external perturbations are small, one can
observe at first two—dimensional oscillations developing downstream of a certain critical point. After a
linear amplification of these waves, three-dimensional and non linear effects become important, leading
to secondary instability and then transition. These basic phenomena can be modified or even bypassed by
factors more or less controlled.

b) Once the first turbulent structures are created, what will be their subsequent behaviour up to the for-
mation of the turbulent boundary layer ?

Both problems will be examined successively. The influence of some of the aforementioned para-
meters will also be discussed.

2 - GENERAL DESCRIPTION OF THE MECHANISMS INDUCING TURBULENCE

2.1. Fundamental aspects with zero pressure gradient and low external disturbances level

2.1.1. Linear amplification of small disturbances

The instability leading to transition starts with the growth of two-dimensional disturbances, the
existence of which has been first demonstrated by the experiments of SCHUBAUER and SKRAMSTAD /1/. These,
now classic, experiments were conducted at the National Bureau of Standards in a subsonic wind tunnel with
a very low turbulence level (T = 0.03 10~? in the working section). Figure 2 shows some records delivered
by a hot wire set at six streamwise positions, at a constant distance from the wall. The fluctuations are
at first almost non existent ; but, when the wire is moved downstream, a regular oscillation appears, with

increasing amplitude as the distance increases.

In fact, the existence of small, regular oscillations travelling in the laminar boundary layer
was postulated many decades ago by RAYLEIGH (1887) and PRANDIL (1921). Some years later, TOLLMIEN worked
out a complete theory of boundary layer instability (1929) and SCHLICHTING calculated the total amplifica-
tion of the most unstable frequencies (1933). For this reason, the instability waves are often referred as
the "TOLLMIEN-SCHLICHTING waves'. Nevertheless, the so~called '"linear stability theory" received little
acceptance, essentially because of a lack of experimental results. The aforementioned experiments of
SCHUBAUER and SKRAMSTAD completely revised this opinion by demonstrating the existence of instability waves.
Physically, the birth of these waves can be related to the concept of receptivity, introduced by MORKOVIN
(1969) . The receptivity describes the means by which forced disturbances (sound, external turbulence) enter
the boundary layer and their signature in the disturbed flow. If they are small, they will tend to excite
the normal modes of the boundary layer ; these normal modes are the TOLLMIEN-SCHLICHTING waves, which
constitute free responses of the laminar boundary layer to the disturbance environment.

a) Short survey of the linear stability theory

A complete account of the stability theory is out of the scope of this paper. However, we need
to introduce some theoretical elements for a comprehensive study of the experimental results.

The stream function representing a single disturbance is assumed to be of the form :

ll)(xs Y t) S k'P(y) ei(ax = wt) (1)
with = %"P_ and V' = - g_lli 2)
o X

It is often assumed that the mean flow is parallel : V = 0 and U depends only on y. The introduc-
tion of relations (1) and (2) into the continuity and momentum equations allows to obtain the ORR-SOMMERFELD
equation, after linearization and elimination of pressure
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PV _ 9q2Pr s o0 (v - w (P - o2y - aU"‘P] =0 (3)

The mathematical nature of the two principal parameters o and w leads to two theories : the spa-
tial theory and the temporal theory. For the moment, we will restrict our purpose to the spatial theory :
w is a real quantity, which represents the circular frequency of the wave and o is complex : o = o, + iai.
Relation (1) takes the form :

Nos 7 @) U] o it s ) -

Y is a complex amplitude function. The amplification factor o, determines the degree of ampli-
fication or damping and a_ denotes the wave number of the perturbation. It o,, a_ and w are made dimension-
less with a reference velocity V and a reference length L, the Reynolds nuiber appearing in (3) is equal
to V L/v.

Due to the homogeneous boundary conditions (K' and v' must vanish at the wall and in the free
stream), the problem is an eigenvalue one. When the mean velocity U(y) is specified, a non zero solution
of (3) is obtained for particular combinations of the four real parameters R, Ogs O and w.

The ORR-SOMMERFELD equation was solved by many authors (see /2/ and /3/ for instance). Some results
of such computations for the BLASIUS flow are represented on figure 3 where L = &1 and V = Ue, so that
w = 2mf81/Ue (f is the physical frequency). Figure 3a shows some curves of constant amplification rate a, ;
curves of constant wave number O_ are not represented for clarity. In this diagram, curves of constant
frequency F = 2mfv/Ue? = w/R appear as straight lines through the origin. Stability diagrams are very often
plotted in (F, R61) coordinates, as it is the case on figure 3b, which deals only with the curve a, = 0.
The locus @, = 0, called the neutral curve,separates the region of stable from that of unstable disturbances.
In particular, there is a value of the Reynolds number below which all disturbances decay ; it is the "cri-
tical Reynolds number", RSl _, which is slightly greater than 500. Let us notice that computations including
non parallel effects (/4/, “/5/) give lower value (see figure 3b).

Figure 3 indicates that a single frequency waves travelling in the laminar boundary layer is at
first damped, then amplified, and again damped as it leaves the unstable region. An important parameter is

the total amplification rate, defined as :
A /X

o o
A is the wave amplitude and the index o refers to the streamwise position where the wave enters
the unstable region.
Two other quantities are of interest :

~ The physical wave-length A of a given wave is obviously related to o_. At RSl = 2 000, the wave-
lengths of the unstable frequencies lie between 6 § and 18 §. The TOLLMIEN-SCHLICRTING waves are longer com-
pared to the boundary layer thickness.

- The phase velocity ¢ is equal to w/ar. For unstable waves at moderate Reynolds numbers, calcula-
tions indicate that : ¢ = 0,2 to 0,4 Ue.

Similar results may be obtained as regards to temporal theory. In this case, & is real and w is
complex. The stream function is now expressed as :

Vix, v, t) = Pry) LMt Jllax - wpt)

It is clear that the neutral curves are identical In spatial and in temporal theories. As a gene-
ral rule, GASTER's relation makes possible to convert a temporal to a spatial amplification rate /6/.

In the preceding lines, we considered only two-dimensional waves (i.e. waves, the crests of which

travel normally to the main flow). A more general form of the stream function can describe the oblique,
three-dimensional waves :

e R q)(y) ei(otx + Bz - wt) (6)

These waves are often neglected in two-dimensional problems. In fact, it can be demonstrated that,
in the temporal theory, instability appears first for a two-dimensional disturbance (SQUIRE's theorem).

b) Some experimental results

We already mentioned that SCHUBAUER and SKRAMSTAD were the first to observe that natural oscilla-
tions existed in the laminar boundary layer. In order to make more quantitative comparisons with the theory,
they worked then.with artificial disturbances : a thin metal strip extending over a width of about 30 cm
was placed near the wall and was excited by a magnetic field induced by an alternating current. The so-called
"vibrating ribbon" technique made possible to produce two-dimensional disturbances of a prescribed frequency
with a controlled initial amplitude. The wave.length, amplification rate, amplitude and phase velocity of
the waves were measured with a hot wire anemometer, and the agreement with theoretical results was good.

More recently, ROSS, BARNES, BURNS and ROSS /7/ repeated in some way SCHUBAUER-SKRAMSTAD experi-
ments. Their wind tunnel had also a very low turbulence level (T = 0.03 10-2) and a vibrating ribbon was
used to produce instability waves. Typical results are plotted on figures 4 and 5. In figure 4, the experi-
mental distributions of u'/Ue obtained for a given frequency at two values of RSl are compared with
JORDINSON's calculations /2/. An interesting feature of these profiles is the existence of a zero-amplitude
point, corresponding to a sudden phase shift of 180°. The experimental and theoretical evolutions of the
total amplification rate (see-relation (5)) are compared in figure 5 for three frequencies : the overall
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agreement is reasonable. The points where the curves have a zero slope correspond to Q. = 0, that is to
say to the neutral curve. The experimental value of the critical Reynolds number was lower than that pre-
dicted by the parallel flow assumption theory, but a better agreement was since achieved with the SARIC-
NAYFEH calculations /5/ where the non parallel effects are taken into account (figure 3b).

The vibrating ribbon generates waves of a single frequency. In practical situations however,
a source of disturbances such as free-stream turbulence will create waves covering a more or less wide
range of frequencies and orientations. For this reason, GASTER and GRANT /8/ used a completely different
approach : an acoustic pulse was generated by a loudspeaker and transmitted to the boundary layer by a
small hole in the flat plate. "This stimulation of the wave system generates a packet of waves, which
spreads out as it travels downstream. The initial disturbance excites all possible modes and the wave pac-—
ket forms through selective amplification and interference of the most unstable waves'. Figure 6 shows the
growth of two-dimensional waves of various frequencies. Theoretical predictions performed by GASTER /9/ are
also given. There is a major difference between figures 5 and 6 : in the present case, all curves are ob~-
tained in a single experiment ; on the contrary, each curve shown on figure 5 needs a different experiment.

KNAPP, ROACHE and MUELLER /10/ have used the smoke visualization technique in order to describe
the various stages leading to transition. The laminar boundary layer develops in natural conditions
(T = 0.1 10-2) on an ogive nose cylinder aligned with the free-stream. The upper part of the figure 7 dis-
plays the overall smoke pattern as observed with zero pressure gradient (the lower part presents typical
records obtained in various experiments). It can be seen that the instability waves take the form of con-
centrated bands of smoke around the cylinder (left part of the sketch). These "rings" become more distinct
as they move down the body, indicating the existence of a strong amplification.

2.1.2. Non linear amplification of disturbances

When the initially weak disturbances reach a certain amplitude, their development begins to
deviate from that predicted by the linearized theory : the quadratic terms neglected in this theory are
then appreciable and three-dimensional effects appear. The smoke visualizations made by KNAPP et al. indi-
cate that the initially two-dimensional waves are distorted (figure 7) into a series of "peaks" and "valleys".
As the flow proceeds downstream, this pattern becomes more and more pronounced.

a) Earlier experimental studies under controlled conditions

The three-dimensional development of the disturbances was studied by KLEBANOFF, TIDSTROM and
SARGENT /11/ under controlled conditions. A vibrating ribbon is once again used and thin spacers are placed
beneath the ribbon in order to induce a minute periodic variation in the boundary layer thickness in the
spanwise direction, Other careful experiments have been carried out by KOVASZNAY, KOMODA and VASUDEVA /12/,
who used a technique similar to that of KLEBANOFF et al. : in addition, an array-of hot wires provides
instantaneous pictures of the flow development.

Figure 8, extracted from /11/, shows the spanwise distributions of the streamwise fluctuation
intensity at three streamwise positions. The hot wire is placed at a constant height near the wall. Regions
of maximum and minimum amplitude correspond respectively to the "peaks" and 'valleys". At x - x, = 7in.,
the amplitude measured at the peak position is about six times greater than that measured at the valley
position. This observation is illustrated in figure 9, where the amplitudes at peak and valley are plotted
as function of the distance from the ribbon.

The distribution of the mean velocity across the boundary layer is also distorted, as it can be
seen in figure 10. The considered stations are those indicated on figure 9. At stations C and D, the profiles
measured at the peak have developed a point of inflexion, with a progressively greater defect in velocity.

On the contrary, the valley position is characterized by a profile somewhat fuller than the BLASIUS one.
Measurements of the mean cross-flow velocity W indicate the generation of a system of longitudinal vortices.

In such controlled conditions, the flow remains strictly periodic. For a certain fraction in each
cycle of the primary (TOLLMIEN-SCHLICHTING) wave, the instantaneous inflexional form at the peak is more
pronounced that the mean one. As a consequence, there is a marked increase in spanwise vorticity. Figure 11
shows the contours of constant 3U/dy (approximate vorticity component in the spanwise direction) measured
by KOVASZNAY et al. at the peak position. The abscissa is t/T, where T represents the period in time of the
primary wave. With the reservation that a period in time corresponds to a wave-length in space, the plotted
curves define a spatial pattern moving towards the right. For the BLASIUS profile, the maximum vorticity is
encountered at the wall and is equal to 0.571 when made dimensionless by 81 and Ue. Figure 1l indicates that
this value is exceeded at y/8 = 0.4 or 0.5 during about a third of the cycle. TANI /13/ suggests that
"the spanwise vorticity is convected away from the wall by the induced velocity due to the streamwise vor-
tices. Upon reaching the outer part of the boundary layer ... the vortex tubes constituting the spanwise
vorticity are stretched out, until high concentration of vorticity is formed in a thin layer called high-

shear layer."

Similar measurements performed off-peak indicate that the vorticity becomes less intense as the
valley position is approached. In a plan view, the high-shear layer looks like a blunt-nosed delta /12/.

b) Ordered peak-valley structure in natural conditions

Spanwise variations are also present in natural conditions. KLEBANOFF et al. /11/ reported mea-
surements of the streamwise fluctuation in a direction normal to the main flow : although less regularly
spaced than in controlled conditions, a peak-valley system was found to occur. This system is ordered in
the sense that peaks follow peaks and valleys follow valleys. The spanwise wave-length is generally somewhat
smaller than the streamwise wave-length. It can be noticed that this structure (the so-called K-structure)
appears when the maximum rms amplitude of the TOLLMIEN~SCHLICHTING waves approaches one per cent of the
free-stream velooity.
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The problem is now to give an explanation of the preferred spanwise periodicity. BENNEY and LIN
/14/ and BENNEY /15/, /16/ studied theoretically the non linear interaction between a two-dimensional
TOLLMIEN-SCHLICHTING wave and a three-dimensional wave with spanwise periodicity. The calculations revealed
that this Interaction promotes the growth of longitudinal vortices similar to those reported by KLEBANOFF
et al., but were unable to estimate the preferred spanwise periodicity.

CRAIK /17/ investigated the interactions of a resonant triad of TOLLMIEN-SCHLICHTING waves. The
considered triad involved a two-dimengional wave and two oblique waves propagating at equal and opposite
angles to the flow direction, and such that all three waves have the same phase velocity in the downstream
direction. The non linear interaction analysis leads to :

T S

A dt ao al AW ocoooo
x

1 dB _ AB

B ac - bo + b1 —i— L

. A and B are respectively the amplitudes of the two-dimensional wave and of each oblique wave.

B” is the conjugate amplitude. a_ and b_ are given by the linear stability theory ; an orthogonality condi-
tion determines the interaction coefficients a, and b,. The calculations indicate that b, is very large.
This means that there can be a powerful interaction, ieading to a rapid transfer of energy from the primary
shear flow to the disturbances, especially to the oblique waves.

CRAIK's model is consistent with some experimental observations, but is inoperative in other cases.
As pointed out by HERBERT /18/, the spanwise wave-length seems to depend on unknown details of the experi~
mental set-up.

c) Staggered peak-valley structure in natural and controlled conditions

The peak-valley system described above does not constitute the only one which was encountered.
KNAPP, ROACHE and MUELLER /10/ observed that the smoke streaklines formed a staggered peak-valley structure.
In this case, peaks follow valleys and valleys follow peaks (figure 12). Let us observe that the smoke
visualizations presented in figure 7 do not present this staggered arrangement, because they describe the
development of a single wave.

More recently, the staggered structure was studied under controlled conditions (see /19/ for ins-
tance) : a vibrating ribbon generates two-dimensional TOLLMIEN-SCHLICHTING waves and three-dimensionality
results from very weak background disturbances. In fact, two different types of staggered structures have
been observed : one in which Az is larger than Ax (C-type structure) and another in which A_ is larger than
Az (H-type structure). As pointed out by SARIC and THOMAS /19/, the
important parameter is the maximum value of the primary fluctuation. For amplitudes of the order of 0.3 %,
the C-type system appears and is a result of the CRAIK's mechanism /17/. At amplitudes between 0.3 % and
0.6 7, the staggered three-dimensional pattern can be explained by the model of HERBERT /18/ and is called
the H-type pattern. Larger amplitudes lead to the appearance of the ordered structure studied by KLEBANOFF
et al. (K-type structure).

Obviously, a hot wire placed in a flow where staggered peak-valley systems are present will record
subharmonics of the primary wave, because the pattern repeats itself with wave length ZAX. This mechanism
constitutes "the subharmonic route to turbulence" /19/.

2Ry =R ot ok doin

The non linear development of disturbances terminates with the "breakdown" phenomenon. The term
"breakdown" is used "to describe what appears to be an abrupt change in the character of the wave motion
at a peak and the onset of what is believed to be a new instability /11/". This instability is often re-
ferred as the secondary instability (HERBERT /18/ calls it the tertiary instability, reserving the secon-
dary instability term to the non linear mechanisms discussed in § 2.1.2.).

As the flow proceeds downstream, the high-shear layer becomes more and more intense, and finally
induces the new instability. This is due to the inflexional form of the instantaneous profiles : the linear
stability theory predicts that an inflexion point gives rise to important destabilizing effects (see § 2.3.1.).
On an U" signal recorded at y/8 = 0.5 to 0.7, the secondary instability takes the form of a strong negative
pulse, the amplitude of which can be 30 to 40 per cent of the free-stream velocity ; its duration is about
1/10th of the primary wave period (figure 7). This signal is called the "spike". In the later development,

a second spike will also appear. The maximum root-mean-square value of the longitudinal fluctuation increases
abruptly, up to 10 or 15 per cent of Ue.

Figure 13 shows a map of the iso-vorticity contours as measured by KOVASZNAY et al. /12/ at the
one spike and double spike stgges. HAMA and NUTANT /20/ performed careful visualizations in a water channel
by using the hydrogen bubble technique. Examples of results are given in figure 1l4. A vertical, electrically
pulsed wire is placed at a peak position and releases periodically columns of bubbles into a laminar boundary
layer. The bubbles lines are comvected downstream and are deformed by large stimulated waves and by three-
dimensional disturbances. The six photographs cover 40 per cent of the TOLLMIEN-SCHLICHTING period in time
and 60 per cent of the wave length. They indicate the development of the sharply kinked lines of bubbles and
the final exaggeration of the kink into a spiral.

On the theoretical side, GREENSPAN and BENNEY /21/ calculated the growth of secondary disturbances
by a two-dimensional, inviscid, linearized approach. The basic velocity profiles introduced as data in their
theory were the instantaneous profiles measured by KOVASZNAY et al.. The main result is that over one half
cycle of the primary wave, the amplitude of the most unstable secondary wave increases by a factor of about
10, its frequency being about 8 times that of the primary wave. It is clear that this simple theory contains
most of the observed features of breakdown. LANDAHL /22/ made a more ambitious approach on the basis of the
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kinematic wave theory for conservative systems. Some of the assumptions he used were criticized by
STEWARTSON /23/.

The basic mechanism which was studied for disturbances artificially introduced in the boundary
layer is applicable to the case of natural transition : the negative spikes are also observed and are some-
what more numerous at spanwise positions corresponding to the peaks /11/. In their smoke visualizationms,
KNAPP et al. /10/ observed that within a fraction of a wave-length, the peak-valley system gives rise to a
vortex filament, often referred as a "horseshoe vortex" (figure 7). An important difference, however, is
that breakdown occurs intermittently rather than continously as in controlled conditions. KNAPP et al.
reported that in natural conditions, the smoke waves break down in sets rather than as individuals.

For each cycle of the primary wave, the spikes increase in number and form bunches of high-
frequency fluctuations (see U' record in figure 7). This may be interpreted as the shedding of vortices
from the nose as well as from the swept-back sides of the delta-shaped high-shear layer. Such vortices
have been called "hairpin eddies" by KLEBANOFF et al. /11/. They are highly unstable and break down into
smaller vortices, which again break down into smaller vortices. The fluctuations finally take a random
character and form a so-called "turbulent spot", the typical arrowhead shape of which is shown in figure 7.
A detailed study of the turbulent spots will be given in Section 3.

One has to keep in mind that the non linear phase and the breakdown process occur over a relati-
vely short distance. For typical flat plate conditionms, the streamwise extent of linear amplification covers
about 75 to 85 per cent of the distance to the beginning of transition. This explains that calculation me-
thods based on linear theory only (en methods) give good results for predicting the transition location
(see Chapter II).

The fundamental mechanisms which have been described can be more or less modified by a great num-

ber of factors such as free-stream turbulence, sound, pressure gradient, suction, wall curvature ... The
influence of these factors will now be discussed.

2.2. 1Influence of sound and free-stream turbulence (zero pressure gradient)

Sound and free-stream turbulence represent two types of external disturbances of very different
nature :

_ The free-stream turbulence (vorticity-turbulence mode) propagates essentially along streamlines
with the local flow velocity. It is a vectorial, three-dimensional quantity, the spectrum of which covers a
more or less wide range of frequencies.

— The sound is an irrotational mode of disturbance. In low-speed wind tunnels, it propagates at
speeds an order of magnitude faster than the mean flow. It can be considered as monodimensional and the
use of a loudspeaker allows to study the effects of a single frequency.

In both cases, when such disturbances enter the laminar boundary layer, they initiate in it two
responses : a forced response (solution of a non homogeneous problem, because the outer boundary conditions
are mon zero) and a free response (solution of an homogeneous equation such as the ORR-SOMMERFELD equation).
This problem was called the "receptivity" problem by M.V. MORKOVIN.

2.2.1. Influence of free-stream turbulence

On a theoretical point of view, results concerning the influence of external turbulence are rather
scarce. This is due to the three-dimensional and random character of the disturbances. CRIMINALE /24/ stu-
died a non homogeneous form of the ORR-SOMMERFELD equation ; the right-hand side of (3) being replaced by
a forcing function V(x, y, 2z, t). ROGLER /25/ represented the free-stream disturbances by arrays of rectan-
gular vortices, oscillating sheets of vorticity and irrotational fluctuations, and examined their interac-
tion with a boundary layer formed by two straight-line segments. Despite these studies, the linking between
imposed disturbances and instability waves is not fully understood.

On an experimental point of view, the results are more numerous. They indicate trends and suggest
empirical correlations which may be of interest for practical purposes.

a) Effect of T on transition location

The effect of free-stream turbulence on transition location is shown on figures 15 and 16, where
the transition Reynolds number Rxy is plotted as a function of the external turbulence level T. In figure 15,
T is varying from O to 3 102 ; the high values of T, such as those used by HALL and HISLOP, are achieved
by installing grids just upstream of the test section. Figure 16 shows an enlargement of the previous graph
for the lower values of T, say T < 0.3 10-?. The considered experiments have been carried out in low turbu-
lence wind tunnels, where T is increased by successively removing the damping screens. As T becomes very
small, the data of SCHUBAUER-SKRAMSTAD /1/ and those of WELLS /26/ exhibit the same trend, in the sense that
Rxp reaches a constant value. But this value is about 2.8 10% for SCHUBAUER-SKRAMSTAD and about 5 10® for
WELLS. In fact, sound component controls transition when T is very low and the effect of "true" free-stream
turbulence can be only observed at values of T greater than 0.1 10-2. (The influence of sound will be exa-
mined in § 2.2.2.).

In a general manner, the experimental data seem to collapse onto a single curve. Analytical repre-
sentations of this curve have been proposed ; they will be discussed in Chapter II. It can be observed that
transition moves rapidly upstream when T increases. This effect appears to be very strong : the value of
Rxp corresponding to T = 0.3 10-2 is about three times greater than that corresponding to T = L.5 102, On
the other side, it is obvious that Rxq depends not only on the root-mean-square value of the free-stream
turbulence, but also on its spectrum. The effect of this latter parameter was studied by MACK /27/.
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b) Some detailed experimental results

The rapid decrease in Rxyp indicates that important changes in the laminar boundary layer structure
must appear when T increases.

Experiments have been carried out at ONERA/CERT /28/ in a wind tunnel where the natural turbulence
was low, but not very low (T = 0.2 10-2). The experimental set-up is shown on figure 17, as well as a free-
stream turbulence spectrum. The boundary layer develops on a cylinder aligned along the axis of an axi-
symmetric wind tunnel. The angle of divergence of the slightly conical wall around the cylinder is such
that the external velecity is practically constant and equal to 33 m/s.

Profiles of the u'-fluctuation are presented on figure 18 for five stations within the laminar
region. At these abscissa, the measured mean velocity profiles are confounded with the BLASIUS solution
within the experimental uncertainty. The signal recorded at x = 0.66 m shows that the instantaneous velocity
is the sum of an irregular, low frequency oscillation and of a more regular oscillation at a higher frequency.
The spectra presented on figure 19 confirm this observation ; they were measured at various streamwise posi-
tions, at a constant value of the dimensionless distance from the wall y/8 = 0.2. The low frequency range
(f < 200 Hz) represents the boundary layer response to the imposed extermal fluctuations, whereas the local
peak centeréd around f = 500 - 600 Hz is related to TOLLMIEN-SCHLICHTING waves, that 1s to say to eigenmodes
or natural oscillations. Amplitude profiles corresponding to various frequencies are plotted on figure 20
for x = 0.66 m. As expected, the frequency f = 600 Hz exhibits the classical shape of the TOLLMIEN-
SCHLICHTING waves profiles with a zero-amplitude point located at y/§ = 0.5 ; on the stability diagram, this

frequency is placed near the upper branch of the neutral curve, in the region where the greatest amplifica-
tion factors are encountered.

Other experiments were performed with higher values of T /29/. For this, a grid was inserted at
the entrance of the working section. As it can be seen on figure 21, the root-mean-square value of the
streamwise fluctuation in the free stream decreased from T = 0.9 10~? (at the stagnation point) to T = 0.3 10~2
(at the end of the working section). A power spectrum, measured at x = 0.66 m, is also presented on this
figure : the very fine meshes of the grid damp the low frequencies but turbulence is generated for frequen-
cies up to 4 000 Hz and even higher.

Figure 22 shows two samples of u'zprofiles, with corresponding spectra measured in the boundary
layer. At the first station, which is located near the stagnation point, the fluctuation level does not
exhibit a large departure from its free-stream value and the spectrum extends over a relatively wide range
of frequencies. At the second station (x = 0.66 m), the fluctuation amplitude increases, with a spectrum
reduced to lower frequencies, which are stable according to linear stability theory ; the.peak related to
the TOLLMIEN-SCHLICHTING waves appears at f = 500 - 600 Hz, but is not so clearly noticeable.

Experiments were performed with another grid (grid 2), which created a higher free-stream turbu-
lence intensity. In this case, transition moved upstream and occured without the appearance of TOLLMIEN-
SCHLICHTING waves, neither on the instantaneous records, nor on the spectra. Such a phenomenon is called
"bypass" ; this word means that, for large external disturbances, turbulent spots are triggered without
resorting to the linear instability theory.

Some other striking features have to be noted :

. The laminar boundary layer can transport fluctuations of large intensity, as it is illustrated
on figure 23, where the maximum value of u'? is plotted for the three configurations (no grid, grid 1,

grid 2). High intensities (5 or 6 per cent of the external velocity) are encountered in the laminar bound—
ary layer.

. As far as the transition location is concerned, the value of Rxy measured with grid 1 is some-
what larger than that observed in the no-grid case. This fact strongly disagrees with the simple correla-
tions where Rx, i1s a decreasing function of T. In fact, the shape of the turbulence spectrum is not taken
into account in such empirical relations.

2.2.2. Influence of sound

The problem is now to study the interference between a laminar boundary layer and a traveling
sound wave of a single frequency f. It will be assumed that the wave propagates in the main flow direction
and that its wave-length is infinite. In these conditions, the free-stream velocity is given by :

Ue(t) = Uy(l + N sin @t), with w = 27f N
N is usually close to 1073,

a) Fundamental aspects (zero pressure gradient)

First of all, it is interesting to know the response of the BLASTIUS boundary layer to the imposed
external oscillation. An important parameter is the Strouhal number S = wx/Uy. The unsteady laminar bound-
ary layer solutions give the following results /30/ :

Ulx, y, t) = Uy [f3(x, ¥) + G(x, v, t)] with : (8)
G = N coswt [fg + nfg/Z + O(Si] at srall S (9
G =N [bosaf - exp(-n) cos(wt - n) + O(S—l/zi] at large S (10)

with k = (EVZv)l/z and n = yk. fé is the classic BLASIUS solution.
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When § is small (equation (9)), the unsteady profile is in phase with the free stream. We will
assume that this regime corresponds to stable boundary layers. Therefore, our purpose is restricted to large
values of S (equation (10)). In this case, the unsteady layer does not grow any longer with x and (8) may
be written as :

UG, v, 8 = Up [E300 ) + N AR stnGr + Q] (1
[o]

The relative amplitude function f%L

layer structure appears clearly : near the wgll, a layer exists in which variations in amplitude and in
phase occur (STOKES layer) ; a second layer in phase with the free stream extends in the outer part of the
boundarg layer. The ratio of the STOKES layer thickness to the steady boundary layer thickness 1s about
0.6/5'/%, For S = 25, the unsteady effects occur at y/8 < 0.12.

and the lag function (b are plotted in figure 24. A double

Experiments show that the free response of the boundary layer to the imposed sound disturbance
is essentially composed of TOLLMIEN-SCHLICHTING waves having the same frequency.

A careful study of the development of instability waves induced by sound was made by SHAPIRO
/31/, /32/. The experiments were performed on a flat plate installed in a low turbulence (T = 0.04 1072)
subsonic wind tunnel.

The growth of disturbances measured under the presence of acoustic excitation (f = 500 Hz) is
plotted in figure 25 and compared with the results given by the linear stability theory. Measurements. at
each station were taken at the position of maximum disturbance amplitude in the boundary layer, for the
frequency of the imposed sound field. A standing wave pattern appears for R6l < 1 000 (the initial ampli-
tude A, is the mean value of A in this region) and disappears slowly downstream. In fact, two types of
oscillations coexist in the boundary layer : the imposed oscillations (sound) and the natural oscillations
(TOLLMIEN-SCHLICHTING waves). If it is assumed that both types of waves have a similar amplitude, then the
instantaneous perturbation u' recorded by the hot wire is :

U' = sinwt + sin(kx - wt), with © = & 12)
The mean square value of u' is simply :
u'? = 1 - coskx (13)

which corresponds to the experimental results at the lower values of RSl. One may notice that the wave-
length of the standing wave pattern is the wave length of the TOLLMIEN-SCHLICHTING waves. More elaborate
computations of this process were made by THOMAS and LEKOUDIS /33/ and led to the same conclusions. See also
works done by MURDOCK /30/ and TAM /34/.

When the TOLLMIEN-SCHLICHTING waves enter the unstable region, their amplitudes become larger than
that of the forced oscillations ; the standing wave pattern is less and less visible, and the evolution of
the natural waves is well described by the stability theory. In a first approximation, the main effect of
the sound takes place near the leading edge ; it is to set an initial condition for the TOLLMIEN-SCHLICHTING
oscillations rather than continuously interacting. Further downstream, the sound and the natural waves
propagate independently of each other.

Another interesting result of SHAPIRO's work is shown in figure 26. The initial mean amplitude A,
of the streamwise fluctuation is plotted as a function of the exciting acoustic velocity. "Clearly the rela-
tion is not only linear, but essentially one to one, except when the sound level is so low that the excita-
tion is dominated by stream turbulence."

b) Effect of sound on transition location

When the acoustic frequency (or a strong harmonic) falls in the range where TOLLMIEN-SCHLICHTING
waves are unstable, the onset of turbulence may be displaced. An example of this effect was already noted
in § 2.2.1. a). A hot wire senses both turbulence and sound, and what is called "turbulence intensity" con-
sists of a mixing of both types of disturbances. In SCHUBAUER-SKRAMSTAD experiments, the addition of anti-
turbulence screens reduced effectively the true turbulence, but had little effect on the acoustic disturban-
ces, which "assumed the dominant responsibility for transition " /35/. WELLS eliminated the sound sources
(sonic throat) and obtained transition Reynolds number of about five millions.

In a later study /36/, SPANGLER and WELLS systematically investigated the effects of acoustic
noise fields of discrete frequencies. The evolution of Rx against the free-stream disturbance intensity
is shown in figure 27. Curve B indicates that high sound Tevels may be encountered without change in the
transition location : in such cases, sound gives rise to TOLLMIEN-SCHLICHTING waves falling outside the
dangerous band, If it is not the case, the transition Reynolds number may be dramatically reduced (curves E,
D and C). A more quantitative study of these experimental results is difficult, because the sound generator
created harmonics, which in some cases, were as strong as the fundamental frequency. (By the way, we can
note that SPRANGLER and WELLS studied also the influence of grid-produced turbulence. The results plotted in
figure 27 show a stronger effect than the other results /1/, /26/ over the same range of turbulence inten-
sity. This demonstrates one more time that there is not a universal RxT(T) curve).

KNAPP et al. /10/ introduced sound into their axisymmetric wind tunnel from a loudspeaker placed
ahead of the contraction cone. The sound frequency was that leading to transition in natural conditions.
The transition location obviously moved upstream. In addition, all transition regions (two and three-
development of the waves, breakdown) were fixed relative to an axial position as in the presence of a vi-
brating ribbon : for example, all the waves break down at the same streamwise location.
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2.3. Combined influence of pressure gradient and free-stream turbulence

2.3.1. Linear stability theory results

In order to clarify the parameters acting on the stability properties, stability calculations
were performed by many authors on the similar FALKNER-SKAN profiles. Let us recall that these profiles cor-
respond to external velocity distributions of the form

Ue = kx™

(14)
In such flows, some important parameters such as the shape factor H or the POHLHAUSEN parameter
Ay = 6%/v.dUe/dx remain unchanged in the streamwise direction.

The main result of the stability calculations is that basic velocity profiles with an inflexion
point (decelerating flows, A, < 0, H > 2.59) are more unstable than those developing in negative pressure
gradients (accelerating flows, A, > 0, H < 2.59) : the critical Reynolds number decreases rapidly, the am-
plification factors become very {arge and, when the Reynolds number goes to infinity, there is always a
range of unstable frequencies (inflexional instability). On the contrary, profiles in accelerating flows
have a neutral curve which tends to be closed at large Reynolds numbers (viscous instability). The following
table /3/ gives some numerical results :

m H Ay )
1 2.218 0.0854 12 490 Two-dimensional stagnation point
1/3 2.298 0.0613 7 680 Axisymmetric stagnation point
0 2.591 0 520 BLASIUS profile
- 0.0654 2.963 - 0.0407 138
- 0.0904 4.032 - 0.0680 67 Separation profile

In a general case, however, the laminar boundary layer does not develop under similarity condi-
tions. This means that at each streamwise position, a given frequency will be placed into a different sta-
bility diagram, defined by the local mean velocity profile. On a numerical point of view, stability calcu-
lations must be performed step by step.

The strong influence of pressure gradient on stability is illustrated in figure 28, which presents
experimental results obtained by SCHUBAUER and SKRAMSTAD in natural conditions /1/. The figure shows oscil~
lograms of the U-fluctuation on a flat wall with a non uniform external velocity. The upper half of the
diagram indicates that a negative pressure gradient damps out the oscillations, whereas the positive pres-
sure gradient, which succeeds, causes a strong amplification and produces transition.

2.3.2. Practical calculation of the critical Reynolds number

Although the critical point is usually located far upstream the transition onset, it is often
useful to calculate it for analyzing experimental results. The most obvious method is to solve the stability
equations, but this can lead to complex and time-consuming computations.

For any non similar flow, it is easier to plot the streamwise evolution of the thickness-momentum
Reynolds number R6 for the considered case, and to compare it with the local, "fictitious", critical Reynolds
number RO, .¢. Figure 29 presents an application of this method. If RO < R6.,¢, the flow is locally stable.
If R6 > R erf? the flow is locally unstable. The true critical abscissa is located at the point where

RO = RO, ¢. For practical applications, it may be assumed that RO.yr depends on the local shape factor only ;
an approximate representation of the stability calculations is the following :

e B2
Recrf = exp [; - 14.%] (15)

In numerical procedures where the local boundary layer equations are solved, it is possible to
use the DUNN-LIN /37/, /38/ formulation :

_ 25 U ) v _ [3@u/ued]
Recrf "’:;TJl , with Ul = [%?§763t] =0 (16)
Ut u' e
¢ is solution of the equation : - T U§9~— = 0.58 17)
c
1 3 (U/Ue) " 32 (U/Ue)
= o= -
with U a(y/8) °* 5(y/8) 7% ° Uc c

In the example given in figure 29, the pressure gradient is at first negative. Due to the low
values of RO and to the high values of Recr » the boundary layer is stable. Further downstream, the pres-
sure gradient vanishes and then becomes pos£tive. The shape factor increases, the fictitious critical
Reynolds number decreases rapidly and the flow enters an unstable region. For such a case, the critical
abscissa is close to the maximum velocity point.
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2.3.3. Effect of positive pressure gradients

a) Transition without separation

Recently, ARNAL et al. /39/, /40/ performed experiments in decelerating flows. The experimental
set-up was already presented in § 2.2.l.. Changing the divergence of the conical wall around the central
cylinder made possible to obtain various pressure gradients. Six cases, labelled A, B, C, D, E and F were
studied. The corresponding distributions of the external velocity are plotted in figure 30, where Up.¢
refers to the velocity measured at the junction cylinder-ogive. The case A corresponds to the flat plate
flow previously mentioned (§ 2.2.1. b)). In the other cases, the boundary layer is subjected to positive
pressure gradients. The free-stream turbulence level T is nearly constant from one configuration to another
and is equal to about 0.2 10-2. In any case, the critical abscissa was found to be located near the maximum
velocity abscissa, i.e. x = 0.15 m.

Figure 31 shows two signalg recorded in the case D for which transition starts at x = 0.44 m.
At x = 0.35 m, the signal looks like the one presented in § 2.2.1. b) for the flat plate case : the insta-
bility waves are small, compared with the low frequencies fluctuations. At the second station, however, the
waves have developed, and the spectrum practically reduces to a single peak at f = 360 Hz. The measured
evolution of the amplitude profile corresponding to this frequency is plotted in figure 32 and compared
with stability calculations, in which the local mean velocity profile (H = 2.96) was introduced. A zero
amplitude point, associated with a phase reversal, is always present. Two maxima are visible near the wall,
the second one being closely related to the existence of the inflexion point.

Figure 31 indicates that in a decelerating flow, the unstable waves can reach amplitudes larger
than in the zero pressure gradient flow (for a given disturbances environment). This confirms the smoke vi-
sualization results obtained by KNAPP et al. /10/ : these authors observed that in an adverse pressure gra-
dient, the waves were more clearly visible than in the flat plate case. Similar observations were made by
COUSTEIX and PAILHAS /41/, who studied the transition phenomena in a strong positive pressure gradient. More
detailed information will be given in Section 3 of this chapter.

As the transition location is approached, the three-dimensional, spanwise variations are weaker
than in the flat plate case. The megative spikes become less and less numerous and breakdown tends to be a
continuous process.

For a given value of T, the principal effect of a positive pressure gradient is to reduce the tran-
sition Reynolds number. Figure 33 shows the evolution of the shape factor as a function of Rx, for the six
cases studied at ONERA/CERT. The laminar calculations indicate that transition always occurs before laminar
separation. In the following lines, we will define the transition onset as the location where the shape
factor exhibits a sudden negative slope. Another presentation of the results is given in figure 34, where
the momentum—-thickness Reynolds number at the transition onset is plotted as a function of the shape factor
at the same location. As it can be expected, the transition Reynolds number decreases rapidly when the pres-
sure gradient intensity increases. This curve does not constitute a transition criterion, but is only a plot
of experimental results. The length of the transition region is also reduced, as it will be discussed later.

b) Separation bubbles

When the pressure gradient is very strong, the laminar boundary layer often separates and transi-
tion may occur in the separated layer. This intricate problem was studied by many authors (see review by
TANI /42/). Recently, detailed measurements were performed at ONERA/CERT by GLEYZES, COUSTEIX and BONNET
143/, /44/, who investigated separation bubbles occuring near the leading edge of an airfoil at incidence,
downstream of the suction peak. A first series of experiments was carried out on a 200 mm chord ONERA LC100D
profile. Examples of external velocity distributions are presented in figure 35, for a fixed incidence
(o = 7°30). In any case, laminar separation is present, but due to interactions between viscous and inviscid
flows, the velocity distribution depends strongly on the chord Reynolds number R . For the so-called
short bubbles (here, for U, > 34 m/s or RC > 0.45 106), the velocity distribution is not far from that ob-
tained at high Reynolds numbers, except in a small domain around the bubble (0.0l m < x < 0.02 m). For
U, < 34 m/s, a sudden change occurs, corresponding to the bursting of a short bubble in a long bubble. In
fact, no discontinuity in the physical size of the separation seems to exist. This can be seen in figure 36,
where momentum thickness at 75 % of chord is plotted, versus upstream velocity : there is continuity in 0
at the bursting point. Nevertheless, the slope of the curve changes rapidly at this point. On a practical
point of view, this figure shows the unfavourable effects of long bubbles, because the momentum thickness
is directly related to the drag coefficient of an airfoil.

A study of the short bubbles has then been made on a special model, called 'enlarged leading edge'.
This model corresponds to a 2.5 m chord ONERA D airfoil, truncated and fitted with a blown flap. An impor-
tant part of the experiments consisted of hot wire and LDA measurements around the separated region. Evo-
lutions of the shape factor obtained with both methods are compared on figure 37, for a configuration where
U, = 13.6 m/s and T = 0.4 10~2 . Discrepancies exist in the separated region, due to the presence of back-
flow close to the wall ; LDA gives more physical values, because it is able to measure negative velocities.
The separation and reattachment points are indicated by arrows. The shape factor reaches important values
(higher than 8), then decreases rapidly towards turbulent values. High frequency instability waves are
recorded in the laminar boundary layer and transition starts at RGT ~ 280.

On the same model, high free-stream turbulence levels were generated by setting a grid at the
beginning of the test section. For T = 2.5 10'2, transition begins upstream of the theoretical laminar se-
paration point (ReT =~ 220) and no more separated region seems to exist.
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2.3.4. Effects of negative pressure gradients

Detailed transition experiments in negative pressure gradients are not numerous. As the flow
acceleration acts to stabilize the laminar boundary layer, the lengths required for such studies would be
too important in laboratory conditions, except if the free-stream turbulence level is high. In such a case,
the external turbulence tends to counteract the favourable effect of the negative pressure gradient. This
interplay can be encountered in many practical situations such as turbomachinery and was investigated, for
instance, by TURNER /45/ and by BLAIR and WERLE /46/, /47/.

BLAIR and WERLE measured the characteristic parameters of boundary layers developing on a very
slightly heated wall. Two accelerating flows were studied. The following expression provides accurate repre-
sentations of the velocity distributions :

Ue =C (A - x)_a (Uein m/s and x in m) (18)

where o was close to unity, so that the acceleration parameter K = v/Ue?.dUe/dx was nearly independent of
X. Free-stream turbulence levels ranging from 0.7 to 5 per cent were generated through the use of rectangu-
lar bar grids.

The experimental evolutions of the shape factor and of the momentum thickness are plotted in
figure 38 for two different configurations. The velocity distribution is the same in both cases (C = 89'95
A =5,08, o =+ 1.066, K= 0.2 10‘6), but the free-stream turbulence level 1s respectively equal to 1 10~
(grid 1) and 2 10=? (grid 2) at the leading edge of the plate. The overall variation of the shape factor is
the same as in positive pressure gradient, except that the laminar values are lower.

Figure 39 compares the streamwise variation of the momentum-thickness Reynolds number to that of the
fictitiouscritical Reynolds number. Experimental positions of the transition onset are indicated by arrows.
It appears that the laminar boundary layer remains well below the stability limit. This means that the

linear processes are completely "bypassed" for these high. turbulence levels.

2.4, Transition in oscillating external flow

This paragraph deals with external flows varying sinusoidally around a mean value U,, that we will
assume independent of x :

Ue = Up(l + N sinwt), w = 27f (19)

This is exactly the expression already used in § 2.2.2.. But the amplitude factors are now larger
than those representing sound disturbances : typical values are ranged from 0.1 to 0.3, instead of 10-3.
At large Strouhal numbers, the amplitude function AU/AU, and the phase function within the laminar
boundary layer remain the same as those depicted in figure 24. Nevertheless, the velocity profile measured
at a fixed station exhibits, during a cycle, large departures from the BLASIUS profile ; an instantaneous
reversing flow may even occur near the wall, but this case will not be considered further. Such large values

of N are usually achieved, either by a rotating vane /48/, /49/, /50/ or by driving periodically a plate in a
steady stream /51/.

2.4.1. An example of periodic transition

Figure 40 presents a series of photographs obtained by OBREMSKI and FEJER /48/ in the following
experimental conditions : N = 0.15, Uy = 16.6 m/s, f = 12.8 Hz. The upper trace in each photograph repre-
sents the oscillating component of the free-stream velocity and the lower trace records the instantaneous
velocity at y/§ = 0.3. Six streamwise stations are considered. The second photograph (x = 10 in) shows that
small waves (wave packet) are present in the boundary layer near the point of minimum instantanecous velocity.
At the 14 in. position, the waves increase in amplitude and turbulent fluctuations appear. Further downstream,
the turbulent patches increase in duration and the wave packets disappear. At the last station, the boundary
layer is fully turbulent. It is important to note that all phenomena occur during a single cycle of the
forced oscillation. Figure 41 summarizes these events in a space-time representation, where the time is
made dimensionless with the period of the oscillation. Fach photograph in figure 40 corresponds to a verti-
cal cut in this diagram. The unsteady pressure gradients with large amplitude tend to make the phenomenon
two-dimensional, as it was already observed in steady positive pressure gradients ; as a consequence, the
turbulent patches "appear to extend ribbonlike across the plate and in this differ from the three-dimensional
spots in steady boundary layer transition" on a flat plate /48/.

By using conditional sampling techniques, COUSTEIX, HOUDEVILLE and DESOPPER /49/ were able to plot
the phase averaged velocity and fluctuation profiles at various instants throughout the cycle (experimental
conditions : N = 0.16, Uy = 27 m/s, £ = 37 Hz). In laminar regime, the shape factor varied typically between
2.7 and 3.5 for Strouhal numbers close to unity. The wave packets were found to occur at instants closely
linked with the existence of inflexion points in the instantaneous velocity profiles. Moreover, the waves
presented the characteristic features of the TOLLMIEN-SCHLICHTING waves.

This suggests that instability waves appear as free responses to the external disturbances and
that their subsequent behaviour depends on the characteristics of the instantaneous profiles. In the
aforementioned experiments, the circular frequency w of the waves was an order of magnitude greater than
that of the imposed oscillation, wW(w/w = 30). This enabled OBREMSKI and MORKOVIN /52 / to reconstruct the
history of the wave packets by using a quasi steady approach : at each time, the instantaneous velocity
profile was introduced as a steady basic profile into the linear stability equations, and the total ampli-
fication rate of waves traveling downstream was computed. Figure 42 shows a scheme of the theoretical
development of a wave packet : the likeness with the second record presented in figure 40 is striking.

Moreover, a good agreement was achieved between the experimental and theoretical values of the most un-—
stable frequencies.
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2.4.2, Periodic and aperjodic transition

OBREMSKI and FEJER /48/ measured the transition location for a wide range of the parameters N, f
and U,. They deduced the curves reproduced in figure 43, which represent the evolution of the transition
Reynolds number as function of N. An intriguing feature is that the experimental data correlate along two
distinct, discontinuous curves AA' and BB'., OBREMSKI and FEJER explained this behaviour by introducing
the non steady Reynolds number R g = L(AUO/Zwv), in which L = Uo/f represents the distance travelled by a
free-stream particle in one cycle of imposed oscillation. They stated that, whem Ryg 1s lower than a criti-
cal value equal to 25 000, the transition Reynolds number is constant and independent of both N and £ _
(curve AA'). For higher values of R, , the transition Reynolds number depends strongly on N, but not on f
(curve BB'). But, as pointed out by LOEHRKE et al. /35/, this explanation is applicable only for the special
natural disturbances which were present in the considered wind tunnel. On the other side, experiments con-
ducted in negative or positive pressure gradients indicate other critical values of Rns'

A more general explanation was developed by OBREMSKI and MORKOVIN /52/. The basic assumption is
that the wave packets break down into turbulence if they reach a certain critical threshold, Ty :

- Wave packets which were amplified beyond Ty during the unstable part of a simgle cycle of the
oscillation should correlate according to BB'. Photographs presented in figure 37 as well as experiments
performed by COUSTEIX et al. /49/, constitute examples of this mechanism. Transition is said to be periodic.

- It is possible, however, that the wave packets remain below T, during the unstable part of the
first cycle. Quasi steady calculations indicate that the remaining part of this cycle is more stable and the
waves will be more or less damped, until they reach the unstable part of the following cycle. In additiom,
the boundary layer becomes thicker, and the unstable frequency range shifts continuously towards lower
frequencies. Such transitions require more than one cycle to develop and are likely to correlate according
to AA'. As the breakdown becomes more irregular, this process was termed aperiodic by OBRESMKI and FEJER 748/ .

2.4.3. Effects of lower values of W/W

All the precedent experiments concerned high ratios of TOLLMiEN-SCHLICHTING frequency w to driving
frequency w. In order to investigate the effects of lower values of w/w, it was found useful to generate
artificial wave packets by means of a controllable disturber. LOEHRKE (thesis, summarized in /35 /) used a
resistance heating wire stretched across the span of a flat plate, at 0.1 < y/8§ < 0.3. Changing the wire
temperature led to horizontal oscillations generating wave packets of known frequency and known amplitude.
Tests conducted with w/w > 10 supported the OBREMSKI-MORKOVIN interpretation of OBREMSKI-FEJER experiments
(§2,4,2,): the jump from the aperiodic transition to the periodic transition was accomplished by increasing
the initial amplitude of the wave packets and not by increasing R, . At lower values of w/w (in the range
3-5), no evidence of early transition was found. "Rather, one could anticipate less instability, because
the TOLLMIEN-SCHLICHTING vorticity interaction has insufficient time to develop during any cycle" /35./.

As the forced oscillation frequency w rises at constant U, the natural instability frequency
seems to lock onto the forcing frequency (w/w = 1). It is exactly what happens with an acoustic excitation
(see § 2.2.1.), except that the values of N are now larger. As in SHAPIRO's experiments, a standing wave
pattern is found to occur (LOEHRKE /35/), the wave-length of which being equal to the TOLLMIEN-SCHLICHTING
wave-length. But, due to the large amplitude of the forced oscillation, the growth of the unstable waves
cannot be computed with a simple steady analysis as in § 2.2.1..

2.5. Influence of wall roughness

In this section, the roughness streamwise position xy will be characterized by 81y and ek, which
represent respectively the displacement and momentum thicknesses of the laminar boundary layer in the ab-
sence of roughness. Two other important parameters are the Reynolds number Rek = UeBy/Vv and the ratio k/8ly,
where k is the roughness height.

2.5.1, Two-dimensional roughness

a) Transition process behind a wire normal to the flow

The mechanism by which a two-dimensional roughness induces transition was studied in great detail
by KLEBANOFF and TIDSTROM /53/. A cylindrical rod was attached to the surface of a flat plate, with its axis
perpendicular to the mean flow direction. Emphasis was placed on measurements within the recovery zone, i.e.
"the region in the downstream vicinity of the roughness where the mean flow has been distorted by the pre-
sence of the roughness."

Figure 44 shows the evolution of the shape factor versus x - Xy, for a case where k/61, = 0.89
and RO, = 265. As it can be expected, the boundary layer separates immediately downstream of the rod ;
further downstream, the shape factor decreases and the mean velocity profile returns to the BLASIUS distri-
bution. However, as it will be discussed later, the transition moved forward from its "natural" position.
The recovery length is about 40 k.

By introducing a hot wire in the boundary layer, KLEBANOFF and TIDSTROM observed waves of large
amplitude. They concluded that, according to linear stability theory, the inflexional velocity profiles
encountered in the recovery zone caused a rapid amplification of the instability waves. The disturbances
reaching the reattachment location are, then, larger than they would be without roughness and lead to a
premature transition. The rod does not introduce new disturbances into the boundary layer, but strongly
amplifies the existing perturbations.

HAMA, LONG and HEGARTY /54/ made water-tank observations of the flow pattern behind a wire.
Dye injections revealed at first the appearance of spanwise, two-dimensional waves ; as they are swept
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downstream, the waves form three-dimensional vortex loops having a well definite wave-length. This peak-
valley system leads to the breakdown into turbulence. Transition occurs essentially in the same manner as
it would occur on a smooth surface.

b) Movement of the transition location

When increasing the roughness height or the velocity, transition moves gradually upstream. A large
amount of experimental work was done for describing this forward movement. An account of these experiments
can be found in /55/. An example of correlation proposed by DRYDEN is presented in figure 45. The ratio
Rxp/(Rxq), 1s plotted as a function of k/8ly, where (RxT)o is the transition Reynolds number in "natural”
conditions. Cylindrical wires are used for all experiments, except for those made by QUICK who investigated
the effects of flat strips. An additional parameter is the free-stream turbulence level T. It can be seen
that appreciable effects occur for roughness elements of height equal to 0.2 to 0.4 81y, but that the for-
ward movement of the transition is progressive.

2.5.2. Three-dimensional roughness

The effect of a three-dimensional roughness element is very different from that of a two-dimensional
element, in the sense that the change in the transition location is more abrupt. This movement is sketched
in figure 46, where the transition Reynolds number is plotted as a function of Ry = Upk/v. Uy is the laminar
velocity at y = k in the absence of roughness. If some three-dimensional roughness element (sphere, small
vertical rod) is placed om a flat plate, when increasing the free-stream velocity, the transition Reynolds
number is at first unaffected and remains equal to that observed on a smooth surface. When the velocity
exceeds some critical value Ue., transition moves rapidly forward : a turbulence wedge is formed ; its ver-

tex is located close to the roughness. For spherical roughness elements, the critical value of Rk is about
500 to 600 /55/, /56/.

As pointed out by TANI /57/, no satisfactory explanation has yet been offered for this critical
behaviour. Because the separated region is narrow, the mechanism valid for two-dimensional elements (§ 2.5.1.)
cannot be put forward. For Ue < Ue. (suberitical velocity), GREGORY et al. /58/ and MOCHIZUKI /56/ disclosed
the existence of two sets of streamwise vortices downstream of a single roughness element (see figure 47,
reported in /57/). One is a pair of spiral filaments close behind the roughness, the other is a horseshoe
vortex wrapped round the front of the element and trailing downstream. These vortices generate a three-
dimensional laminar boundary layer with a cross-flow velocity component ; there is a possibility that tran-
sition occurs via a cross-flow instability, as it is the case for rotating disk or swept wing.

For supercritical velocities (Ue > Ue.), a wedge-shaped turbulent region extends downstream of the
roughness. SCHUBAUER and KLEBANOFF /59/ examined the turbulence wedge of a sphere by using hot-wire anemo-
meter. They found that the wedge comprises a fully turbulent core beyond which the turbulence is intermittent.
Measurements made by MOCHIZUKI /56/ indicate that the vertex angle of the wedge becomes larger in proportion
to the velocity ; typical values are ranged from 10° to 15°. This spanwise growth results from the "trans—
verse contamination" process, which takes place for turbulent regions embedded in a laminar boundary layer.
The growth of the turbulent spots present another example of such mechanism (section 3). Another striking
feature of the turbulence wedge is the presence of streamwise structures close to the wall, which can be
related to the stationary vortices arising from cross-flow instability.

2.5.3. Boundary layer tripping

On a practical point of view, the study of roughness effects is important in two aspects. First
of all, surface roughnesses such as rivet heads or insects may cause early transition and affect, for ins-
tance, aircraft performances. Secondly, boundary layer tripping by rough devices is often used in wind
tunnel experiments in order to fix the transition at a given location. In both cases, it is of great signi-
ficance to be able to estimate the downstream boundary layer behaviour.

Experiments on boundary layer tripping have been carried out at ONERA/CERT in zero, positive and
negative pressure gradients /60/, /61/. As an example, we will briefly present some results obtained on a
flat plate by using spanwise carborundum bands, in which the grains are glued side by side (maximum possible
density). Figure 48 shows a plan view photograph of a carborundum band and a typical evolution of the rough-
ness height in the spanwise direction. This tripping device constitutes in fact a two-dimensional assem-
blage of three-dimensional elements. In any case, the band width is about 10 81y ; k represents the nominal
value of the carborundum grains size.

If one keeps Ue constant but increases k, transition moves progressively upstream towards the
roughness location. Figure 49 shows mean velocity and turbulence profiles in a case where the boundary
layer is turbulent just downstream of the tripping device (x) = 0.148 m, R®, = 215, k/81y = 1.47). High
turbulence intensities are not created on the roughness itself, but rather in the downstream separated

region. We believe that the transition mechanisms are not very different from those described by KLEBANOFF-
TIDSTROM /53/.

The curve plotted in figure 50 represents the critical grain size required for fixing transition
at the roughness location. This critical size depends on RO, ; it is obviously equal to zero when R8, is
equal to the "natural" transition Reynolds number, which is close to 1 000 in the present experiments.

The evolution of the momentum thickness is given in figure 51 for various configurations for which
transition is "fixed" at the carborundum band. It is clear that increasing the grain size produces an over-
thickness of the boundary layer due to the roughness drag. The step AB at the transition location can be
expressed as :

U, 2
1 k.
A8 = E—CD k (ﬁ;?
where the drag coefficient Cp is close to 0.5.

(20)
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TOTLAND /62/ studied the effects of regularly spaced protrusions made by running a tooth wheel
over an adhesive film. He found drag coefficients ranged from 0.10 to 0.70 depending on the shape of the
protrusions. Another interesting finding is that a dried thin film of oil flow mixture commonly used in
flow visualizations may reduce the transition Reynolds number by roughly 10 7. An overall view of TOTLAND's
results is given in figure 52, where the streamwise evolution of RO is plotted for various types of rough-
ness.

2.5.4. Distributed roughness

As far as the effects of distributed roughness on transition are concerned, only scant results
exist, FEINDT /63/ investigated the influence of sand roughness on the transition Reynolds number, for dif-
ferent pressure gradients and different grain sizes. The measurements were performed in a convergent and a
divergent channel of circular cross-section, where T has the relatively high value of 107°. Figure 53 pre-
sents a plot of FEINDT's results as reported by SCHLICHTING /64/ ; the transition Reynolds number is given
as a function of Uek/v. Each curve corresponds to different values of the pressure gradient. It appears
that Rx, steeply decreases for Uek/v > 120. Below this value, there is no influence of the roughness and
transition takes place at the same location as on a smooth surface.

2.6. Influence of suction

In order to illustrate the effects of suction on the flow stability properties, let us consider
at first the so-called asymptotic suction profile. This profile is obtained when a continuous suction is
applied ; at some distance from the leading edge, the boundary layer becomes independent of the x coordinate
and it can be easily demonstrated that :

v(y) -V (Vo 1s the absolute value of the suction velocity)

o

U(y) Ue El - exp(Voy/\))]

The displacement thickness and the shape factor are equal respectively to - V/V_ and 2. Stability
calculations presented in /65/ indicate that the critical Reynolds number RrRS1 is about 22 000. Other nume-
rical results give higher values, of the order of 50 000 (see discussion in /57) It appears that the asymp-
totic suction profile possesses a critical Reynolds number which is about one hundred times larger than the
one of the BLASIUS profile.

(21)

]

Stability computations were performed for similar and non similar velocity profiles, including
the combined effects of pressure gradient and suction /5/, /93/. As a result, the stabilizing effect of
suction is evident.

In fact, suction acts in two ways. Firstly, it reduces the boundary layer thickness. Secondly, it
creates a velocity profile which is very stable. Both effects are favourable for delaying transition, so
that boundary layer suction constitutes the most effective method for viscous drag reduction (see biblio-
graphy given in /94/).

Because it is structurally difficult to entirely manufacture a surface of porous material, efforts
have been made to discretize suction by slots, perforated surfaces or porous strips.

One of the first wind tunnel experiments concerned with boundary layer control by suction was
done by KOZLOV, LEVCHENKO and SHCHERBAKOV /66/. They made detailed mean flow and disturbance measurements
over a single slot of a flat plate and showed a significant reduction of the disturbance amplitude in the
neighbourhood of the slot. But, as pointed out by SARIC and REED /93/, suction slots are expensive to fa-
bricate and require high mass flow rates, which can lead to instabilities such as separation and backflow.
On the other side, perforated surfaces can introduce three-dimensional disturbances into the boundary layer.
For these reasons, attention turned to strips of porous material.

Recent experiments were conducted in this way by REYNOLDS and SARIC /67/ on a flat plate equipped
with porous suction panels. TOLLMIEN-SCHLICHTING waves are introduced into the laminar boundary layer by a
vibrating ribbon and their evolution is studied by hot-wire anemometry. Examples of results are shown in
figures 54 and 55. In figure 54, the shape factor variation is plotted for the two cases : with and without
suction. Waen it is present, suction is applied locally by a spanwise porous strip, at the location indi-
cated by an arrow. The abscissa R is proportional to Yx and Vg = 5.7 10~ Ue. As expected, suction leads to
a decrease in the shape parameter and the extent of the upstream and downstream influence of the suction
strip can be observed. The decrease in H and the suction rate are relatively small, but it must be kept in
mind that excessive suction amounts lead to an over-thinned boundary layer, which becomes very sensitive
to surface roughness.

Figure 55 shows the evolution of the amplitude of a single frequency disturbance generated by the
vibrating ribbon. The suction is intense enough to stop the disturbance growth and cause decay near the suc-
tion strip. A good agreement is obtained with the theory of REED and NAYFEH. In a general manner, experiments
indicate that suction is more effective when applied at Reynolds numbers close to the lower branch of the
neutral curve, than when applied in the region of maximum growth rate.

NAYFEH and EL-HADY /68/ report experiments performed by LACHMANN et al. on a 2.44 m chord model.
By using fourteen porous strips, 1.9 cm wide, laminar flow down to 95 7 chord was achieved at a chord
Reynolds number of 15 108, Flight tests, however, showed difficulties in maintaining smooth joints at the
edges of the strips.



2.7. Influence of transverse curvature

The effects of transverse curvature, which occur in boundary layers on axisymmetric bodies, recei-
ved little attention. To our knowledge, the only available stability calculations are those performed by
MORRIS and BYON /69/, who studied the boundary layer developing on a circular cylinder, the axis of which
is aligned with the direction of the uniform free-stream.

An important parameter is the ratio §1/a, where a is the cylinder radius. Figure 56 shows a compa-
rison between the BLASIUS profile and a profile computed by MORRIS and BYON for 81/a = 0.3781. n is a non
dimensional distance. It can be seen that the profile subjected to a transverse curvature has a shape factor
lower than that of the BLASIUS profile.

With the parallel flow approximation, the stability equation takes the form :
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(22)

which reduces to the ORR-SOMMERFELD equation when r (distance to the cylinder axis) goes to infinity.

Figure 57 presents a comparison of neutral curves for the BLASIUS solution and the boundary layer
on a cylinder with Reynolds number Upa/v = 71 122. At all Reynolds numbers, the cylinder boundary layer is
more stable than the plane boundary layer : the transverse curvature has a stabilizing influence. It should
be observed that the ratios 61/a involved in figure 57 are rather small (81/a = 0.014 for RSl = 1 000).
Unfortunately, MORRIS and BYON do not give neutral curves for other values of the radius Reynolds number.
Increasing 81/a would certainly increase the critical Reynolds number.

Several experiments were conducted on axisymmetric bodies in order to avoid the corner effects

(KNAPP et al. /10/, ARNAL et al. /28/). So long as the boundary layer thickness is small compared with the
body radius, the plane stability results may be used with confidence.

2.8. 1Influence of streamwise curvature

For flows developing over a convex surface, centrifugal forces exert a stabilizing effect, in the
sense that a displaced fluid element tends to be restored to its equilibrium position. The magnitude of this
effect is small : LIEPMANN /70/, /71/ found that on convex surfaces up to §1/R = 0.0026, the same TOLLMIEN-
SCHLICHTING instability occurs as for the flat plate and the transition Reynolds number remains unchanged.

On the other hand, the destabilizing effect of centrifugal forces on concave walls leads to the
formation of pairs of counter-rotating vortices, the axes of which are parallel to the principal flow direc-
tion (figure 58). This instability, which was first treated by GORTLER /72/, often results in a premature
transition.

2.8.1. Theoretical aspects

On a theroretical point of'view, it is assumed that a three-dimensional disturbance is superposed
on the basic flow. Its form is :

et ,9,9) = (¢, P, ™ cos(az)a
(23)
% = hsin(az) A

A = exp{kt) in temporal theory and A = exp(fx) in spatial theory. The earlier works used temporal
theory ; SMITH /73/ first formulated the stability problem in terms of spatially growing disturbances. o, 8
(or k) are real. The amplitude functions £, Y , 7 and h depend an ¥ only and the transverse wave-length A

is related te the wave number o by ) = Iw/a, The shape of the steady vortices described by (23) ia shown in
Figure 58,

GURTLER neglected the boundary layer growth (parallel flow approximation), as well as a number of
terms of order §/R, where R is the radius of curvature of the surface. Relations (23) are substituted into

the continuity and the linearized momentum equations ; eliminating the pressure and the cross-flow velocity
component yields :

(% - &% - o) =Yy
(24)

% -3% %2 -G -of = - z&chfu

. All guantities are made dimensionless with Ue and a characteristic length L ; D = da/d(y/vL),
o = oL, 0 = kL*/v and G = (UeL/v) .vL/R. Gy, is the GURTLER number, which appears in the y-momentum equation.

The above set of equations forms a sixth-order system of homogeneous, linear, ordinary differential
equations and 1s supplemented by homogeneous boundary conditions (f = 4) = 0 at y = 0 and for y » «). This
constitutes an eigenvalue problem for the real parameters (4, o, GL).

For several basic profiles U(y), GORTLER obtained approximate solutions, giving the value of G
for neutral stability (k = 0) as function of O. After GURTLER, many attempts were made to correct and sup-
plement his analysis, but these various Investigations disagreed often strongly. HERBERT /74/ reviewed these
works and compared the resulting neutral curves. This comparison is given in figure 59 for the BLASIUS pro-
file (it is assumed that the effect of curvature on the basic flow can be neglected). The GURTLER number GL
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is formed with the reference length L = ¥vx/Ue. The discrepancies between the various curves are attributed
to three factors :

a) Treatment of the streamwise curvature

Since the local centrifugal force drives the unstable motion, the wall curvature plays a less
important role than the overall curvature of the streamlines. GURTLER assumed that the streamline curva-
ture is comstant at any distance from the wall. Other models were used ; in HAMMERLIN's calculations 175/,
for example, the streamline curvature decays exponentially with y. HERBERT /74/ showed that larger rates
of decay of curvature outside the boundary layer, as well as smaller streamwise extent of curvature, sta-
bilized considerably the flow.

b) Boundary layer growth

SMITH /73/ was the first to include the normal velocity terms. HERBERT /74/ stated that the bound-
ary layer growth should be of more importance than for the TOLLMIEN-SCHLICHTING instability.

c) Numerical.accuracy

Curves 4, 8 and 9 in figure 59 were deduced from the same set of equations. However, strong dis-
crepancies exist, especlally at low G. FLORYAN and SARIC /76/ suggest that SMITH's numerical method (cur-
ve 4) may not provide sufficient accuracy and that curve 8 is subject to numerical errors.

Recently, FLORYAN and SARIC /76/ developed calculations by using a curvilinear system of coordi-
nates representing streamlines and potential lines of the inviscid flow. The streamwise extent of the curved
wall is taken into account, as well as the non parallel effects. Following FLORYAN and SARIC, RAGAB and
NAYFEH /77/ employed a coordinate system based on the potential- and streamlines. Both papers give nearly
identical results. Figure 60 shows curves of constant growth rate for the BLASIUS flow ; when Q goes to
zero, the neutral curve appears to asymptotically level off at G = 0.47 or G, =~ 0.25. In addition, RAGAB
and NAYFEH computed neutral stability curves for different FALKNER-SKAN profiles. As it can be expected,
favourable pressure gradients are stabilizing, whereas positive pressure gradients are destabilizing, but
these effects diminish rapidly as the wave number increases.

NAYFEH /78/ studied the effect of streamwise vortices on TOLLMIEN-SCHLICHTING waves. The basic
flow was the sum of a BLASIUS profile and of an additional flow describing steady counter-rotating vortices
(GBRTLER vortices for example). The numerical results showed that such vortices have a strong tendency to
amplify three-dimensional TOLLMIEN-SCHLICHTING waves having a spanwise wave-length which is twice that of
the vortices.

2.8.2. Experimental studies

A number of experimental studies investigated the influence of steady vortices on the transition
process. TANI and co-workers (1962, 1964, 1969) concluded that GORTLER vortices affect indirectly the tran-
sition by inducing a spanwise variation in boundary layer thickness, at least when the radii of curvature
are not very small. They found also that there is at first an exponential growth with x, which diminishes
downstream.

WORTMANN /79/ studied the development of instabilities in a water tunnel with curved walls. Using
the tellurium method, he determined the direction and relative magnitude of the unsteady velocities. The
first step in the transition process is characterized by the classic GORTLER vortices pattern, as shown in
figure 6la. The strong spanwise deformation of the mean velocity profile appears clearly. Further downstream,
a steady second-order iInstability destroys the symmetry of the vortices (figure 61b) and produces between
each vortex pair boundary layer profiles with several points of inflexion. WORTMANN suggested that this
instability was caused by secondary vortices, the wave-length of which were twice those of the GURTLER vor-
tices. A third-order instability was observed downstream, consisting of regular three-dimensional oscilla-
tions (figure 6lc). The flow became turbulent a few wave-lengths downstream.

BIPPES and GORTLER /80/ conducted experiments on curved walls along which the GURTLER vortices
were fairly strong. They made flow visualization by using the hydrogen-bubble technique and obtained accu-
rate quantitative information of the flow field. Figure 62 presents the experimental profiles of the three
disturbance velocity components, as compared with the -eigenfunctions f,‘P and h computed by FLORYAN and
SARIC /76/. The normal and spanwise velocity perturbations are an order of magnitude smaller than the stream-
wise velocity perturbation. i

Concerning the values of the GURTLER number at which transition begins, the experimental results
are not numerous. Reference is made again to the work of LIEPMANN /70/, /71/, who investigated the influence
of convex and concave curvature on the transition location. The left hand side part of figure 63 shows the
evolution of RO taken at the transition point, versus the ratio 0/R (reported in /64/). As previously sta-
ted, the effect of a convex wall remains very slight. On the other hand, increasing O /R decreases notably
the transition Reynolds number. LIEPMANN found that the transition GURTLER parameter GQ = (RG./@7§)T is

close to 9 at a very low turbulence level, whereas at higher turbulence levels (T ~ 0.3 10‘2), the value
was about 6. It must be emphasized, however, that LIEPMANN's data are restricted to slightly curved walls.
FOREST /81/ indicates that measurements on turbine blades give GeT = 4.5 for T = 4 1072, The dependence on

streamwise pressure gradient is certainly small, due to the strong mean velocity profile distorsions intro-
duced by the GORTLER vortices. In any case, GeT is about two orders of magnitude greater than the critical
CORTLER number.



3 - THE TRANSITION REGION : TURBULENT SPOTS AND INTERMITTENCY

The major part of this section is devoted to the description of the transition region in steady
flow without streamwise pressure gradient (§ 3.1.), because this configuration has attracted a great num-—
ber of more or less fundamental studies. Although less documented, the influence of positive or negative
pressure gradients will be discussed in § 3.2.. Recently, the development of conditional sampling techni-
ques made possible to investigate the flow behaviour in the presence of an external oscillating flows ;
typical results are presented in § 3.3..

3.1. The transition region with zero pressure gradient

It has been shown (§ 2.3.) that the breakdown process results in the formation of a turbulent spot
exhibiting an arrowhead shape when viewed from above (figure 7). Innatural conditions, the spots originate
in a more or less random fashion. Once created, they are swept along with the mean flow, growing laterally
and axially and finally covering the entire surface. The transition region is defined as the region where
the spots grow, overlap and form a turbulent boundary layer. '

Experimentally, the transition region may be studied, either in natural or in artificial condi-
tions. In the first case, long-time averaged measurements describe the overall evolution of the boundary
layer characteristics from the laminar to the turbulent state. In the second case, turbulent spots are
created artificially at fixed positions, at a given frequency ; this enables a more fundamental approach
of the phenomena, because the random character of the spots development is suppressed. Both aspects will
be successively reviewed.

3.1.1. Natural conditions

A general sketch of the evolution of the boundary layer parameters during transition was given
in figure 1. Figure 64 shows more precisely the decrease in the shape factor from the laminar to the tur-
bulent state as measured in the case A of our experiments /82/. Instantaneous signals recorded near the
wall are also presented for three stations located respectively at the beginning, in the middle and at the
end of the transition region. The successive appearance of turbulent spots, characterized by high frequency
fluctuations, and of more regular laminar zones, is called the intermittency phenomenon. By definition, the
intermittency factor y represents the fraction of the total time that the flow is turbulent : in a laminar
boundary layer, yY'= 0 and in a fully turbulent boundary layer, vy = 1.

Figure 65 presents two instantaneous signals recorded at the same streamwise position but at two
distances from the wall, one being near the wall and the other in the middle of the boundary layer thick-
ness. The corresponding power spectra are also gilven. When y increases, the signature of the spots has at
first a rectangular shape and then a triangular one. The leading front of the spots is marked by an abrupt
change in velocity (towards higher velocities at y = 0.4 mm, towards lower velocities at y = 2.1 mm), but
the return to laminar flow is characterized by a slow, exponential-like variation of the velocity. No peak
appears on the spectra.

a) Mean velocity and "turbulence" profiles

The change in the velocity profiles during the transition process is illustrated in figure 66,
where the classical measurements of SCHUBAUER and KLEBANOFF /59/ are reported, with the corresponding
experimental values of y. If a pitot tube is moved downstream at a constant height near the wall, it exhi-
bits a marked increase in the total pressure, corresponding to the increase in the mean velocity. This
method (the so-called JONES's criterion) allows a rapid determination of the transition region.

Profiles of the longitudinal fluctuation intensity are shown in figure 67. As the transition re—
gion is entered, the fluctuation level increases markedly near the wall and reaches values of 15 to 16 per
cent of the free-stream velocity (about twice the classical values observed in a fully turbulent boundary
layer). A second local maximum appears in the middle of the transition region. Further downstream, the
intensity of the first maximum decreases and the profiles look like those measured in a turbulent boundary
layer.

The complexity of the transition region comes from the fact that it contains a mixture of two dis-
tinct flows, one pertaining to the laminar flow and the other pertaining to the turbulent flow. A convenient
methode for studying separately both flows is the conditional sampling technique. Before presenting some
results, it is necessary to precise some definitions or notations.

b) Conditional sampling

The first task is to determine a detection signal, D(t), which reflects as well as possible the
considered intermittency phenomenon. D(t) may be, for instance, the instantaneous signal to be studied or
a time derivative of this signal : ARNAL et al. /82/ used IBZU/BtZI which is very low in laminar regions
and very large in turbulent spots due to the presence of high frequency fluctuations. The comparison of
D(t) with a threshold level makes possible to obtain the intermittency function I(t), which is 0O in laminar
regions and 1 in turbulent regions, and I(t) enables to compute some interesting quantities :

Y = I(t) Intermittency factor
Ut = I(t) u(t)/y Turbulent mean velocity
U% = (1 - I(t)) ult)/(1 - v) Laminar mean velocity

The overbar denotes a time-averaged value.
u! (respectively ui) are the instantaneous fluctuations around Uy (respectively Uy). It is obvious that
relations exist between a quantity and its conditional sampled values inside and outside a turbulent spot
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U= YU+ 1 -y, (25)
u?=yul? + (1 - w? e yd - @ - u)? (26)
Similar relations can beobtained for v'%, w'?, u'v', u'? and so on. Us Ugs u;Q, uiz are

zone averages.

A second type of conditional sampling results is given by the so-called ensemble averages. Let
T be the total duration of a spot and t the time measured from the beginning of this spot. At a fixed
value of t/T,, we can calculate an arithmetic average of U(t) over agreat number of spots, even if these
spots are not of equal duration. A statistical picture of a spot is deduced by varying t/T_ from 0 to 1.
Such an average will be denoted by <Ut>' In the same way, it is possible to obtain ensemble averages for

<>, <V >, <V, <ué2>, <uiz> and so on.

¢) Examples of results

Conditional sampling of the instantaneous longitudinal velocity was performed in the zero pres-
sure gradient case, at the three stations indicated in figure 64 /82/. Figure 68 shows the distributions
of Y across the boundary layer. Y varies from a constant maximum value close to the wall to zero towards
the edge, but it is generally assumed that the Y value near the wall is the characteristic property of
importance for the transition region. These maximum values are equal respectively to 0.25, 0.55 and 0.85
for x = 0.87 m, 0.9 m and 1.07 m. The streamwise evolution of ¥ will be discussed in Chapter II, which"
deals with the prediction methods of the transition regilon.

Figure 69 presents the zone averaged profiles of the laminar and turbulent mean velocities. Accor-
ding to the observations made on the instantaneous signals, the difference U_ - U, is positive near the
wall and becomes negative when the outer edge of the boundary layer is approached.

Relation (26) indicates that the turbulence intensity u'? measured by a hot wire (which integrates
the square of U' over a long time) is the sum of three terms : a turbulent term, a laminar term (usually
small) and a third term which accounts for the steps between laminar and turbulent mean velocities. These
three components are plotted in figure 70 for the station located towards the end of the transition region.
As expected, the laminar contribution is very low ; on the contrary, the term Yy -v)(@U,_-1u Y2 plays an
important role, as it can be seen on the right hand side of the figure, where is plotted the “ratio of
this term to the global "turbulence" u'?, Close to the wall, it represents about 40 per cent of u'? ; it
vanishes at the point where the laminar and turbulent mean velocities are equal and then presents a second
maximum, which corresponds to the second maximum observed on the u'? profile.

Ensemble averages of the turbulent velocity are presented in figure 71 ; they were computed for
various distances from the wall, in the middle of the transition region. In this plot, we assume that the
leading interface of the spot appears at the same time for all values of y. This adjustment in time allows
to draw ensemble averaged instantaneous profiles during the passage of the spot. Four of these profiles
are shown in figure 72. Profilel is close to the BLASIUS profile (H = 2.6) ; profile?2 is essentially cha-
racterized by an instantaneous increase in the boundary layer thickness and by a decrease in the shape
factor. Profile 3 presents high velocities close to the wall. At the end of the spot (or at the beginning
of the following laminar region), profile 4 looks like a laminar velocity profile in accelerating flow
(H = 2).

3.1.2. Artificially created spots

Different techniques have been used for initiating turbulent spots in a nominally laminar bound-
ary layer

- electric sparks : MITCHNER /83/, SCHUBAUER-KLEBANOFF /59/, ELDER /84/, WYGNANSKI-SOKOLOV-
FRIEDMANN /85/ ...

- small jets of short duration : COLES-BARKER /86/, CANTWELL-COLES-DIMOTAKIS /87/, MATSUL /88/,
GAD-EL-HAK - BLACKWELDER-RILEY /89/.

- displacement of a small pin into the boundary layer : COLES-SAVAS /90/ ...

a) Shape of the spots — Propagation velocities

In the following lines, h and b will refer respectively to the height of the spot and to its span ;
b = 0 corresponds to the vertical plane of symmetry.

The general shape of a turbulent spot is depicted in figure 73. Figure 73a shows a cross—-section
of the spot through its vertical plane of symmetry. It has a more or less triangular shape, with a slight
overhang at the leading interface. The spot is presented in a (t, y) diagram. When presented in the physi-
cal (x, y) coordinates, it would have a more flat shape. In a plan view, the spot presents the well-known
arrowhead shape, as it can be seen in figure 73b. The leading edge is swept backwards at an angle 6 of
about 15°. If the maximum span of the spot is plotted as a function of the streamwise distance, it appears
that the spot grows linearly with x. The wedge angle was found approximately equal to 10° or 11° /85/.

Figure 74 is extracted from the work of WYGNANSKI et al.. It shows the spanwise variation of the
propagation velocities of the spot. "The propagation velocity U, of the trailing edge is 0.5 Ue and seems
to be independent of the coordinates x, y and z. The propagation velocity U . of the leading edge 1s 0.89 Ue
on the plane of symmetry only and decreases slowly with increasing z." These values are in agreement with
those found by SCHUBAUER-KLEBANOFF, except that the latter authors measured some increase of U _ with y.

It is clear, however, that the difference ULE - UTE explains the streamwise spread of the spots.
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CANTWELL, COLES and DIMOTAKIS /87/ studied the structure of a spot in its plane of symmetry. They
discovered that the mean flow can be fitted to a conical growth law, that is to say the spot can be described
by two similarity coordinates, & and'q:

. J

=" and n=-—
Ugt U t

Thus, they could use their experimental data to construct streamlines and particle paths in the
similarity coordinates. These plots revealed the existence of two vortex structures inside the spot.

b) Mean velocity measurements

WYGNANSKI et al. as well as CANTWELL et al. determined the ensemble velocity <U > as a function
of t for various values of y, Figure 75 shows a qualitative comparison between the resulfs of CANTWELL et
al. and those obtained in natural conditions. The overall pattern is the same. Moreover, instantaneous pro-
files measured by WYGNANSKI et al. exhibit an evolution similar ©f that depicted in figure 72.

WYGNANSKI et al. measured also the two other components of the mean velocity. Figure 76 represents
the variations in U and V during the passage of a spot, for y/h = 0.325, and at different spanwise loca-
tions. The normal velocity V is strongly negative after the leading interface and becomes positive through-
out the rest of the spot ; the total variation in V is about 0.03 Uy. This histogram may be interpreted as
the signature of a horseshoe vortex. Measurements of the spanwise velocity indicate that W increases with
increasing z and reaches a maximum at z/b > 0.7 where W = (.07 Ue-

¢) Structure of the turbulent spots

By using conditional sampling techniques, COLES and BARKER /86/ found that a turbulent spot is
essentially a single, large horseshoe vortex structure. WYGNANSKI et al. agreed with this conclusion, but
later, CANTWELL et al. concluded that there were in fact two vortex structures associated with the average
spot. In fact, as the spot is ever growing, its structure must evolve in time.

This was demonstrated by MATSUI /88/ who studied spots development using the hydrogen bubble tech-
nique. Figure 77 shows successive photographs obtained when a bubble generating wire is placed horizontally
to the wall. In the first picture, a strong horseshoe vortex and some streamwise vortices are visible.
While the spot is travelling downstream, new vortices are created, leading to a marked increase in the
spot size. MATSUI concluded that a spot was composed of many small vortices ; the new vortices generated
on both sides of the spot explain its lateral growth (cross—contamination process, see below) ; the new
vortices generated in the rear part of the spot explain its streamwise growth. GAD-EL-HAK et al. /89/ con-
cluded in the same way ; they stated that a spot is "a random collection of turbulent eddies" and that it
grows "by adding more eddies to this collection."

When the spot reaches a certain size, it presents most of the classical turbulent properties. This

results was found to apply in matural conditions (gaussian distribution of the u' fluctuation /82/) as well
as in controlled conditions (logarithmic velocity distribution near the wall /85/).

d) The growth mechanisms

Entrainment of the non turbulent fluid may occur through two ways :

- by entrainment of the external irrotational fluid ;

- by entrainment of the rotational fluid in the ambient laminar boundary layer.

The first mechanism is similar to that observed in a fully developed turbulent boundary layer. It
involves large scale eddies in a "gulping" process and is responsible for the spread of the spot in planes
normal to the wall.

The second mechanism is very different from classical entrainment. It is responsible for the span-
wise growth of the spot, which is an order of magnitude greater than that normal to the plate : dh/dx = 0.013
and db/dx = 0.18, where h and b denote characteristic scales of the spot in the y and z directions, respec-
tively /89/. CHARTERS (1943) was the first to note that the transverse growth rate of a turbulent region
embedded in a laminar boundary layer is larger than usual entrainment rates. He called this process "trans-
verse contamination” ; GAD-EL-HAK et al. /89/ call it "growth by destabilization" : the turbulent eddies
within the approaching spot may induce perturbations into the surrounding unstable laminar boundary layer.

These fluctuations grow up and break down, forming new turbulence without ever being in contact
with the older turbulence. The same mechanism explains the spread of a turbulent wedge behind a three-
dimensional roughness element (§ 2.5.2.). The vertex angle of the wedge (typically 10° to 15°) is comparable
with the maximum angle subtended by the spot measured from its virtual origin (about 10° /85/).

e) Interactions between spots

Up to now, only individual spots have been considered. So, the problem is to examine if the pre~
ceding results remain valid when several spots travel downstream together.

ELDER /84/ investigated the degree of interaction between two identical spots placed side by side.
It was found that spots grow independently of each other.

A completely different conclusion was given by COLES and SAVAS /90/ who created large arrays of
spots : the interaction between neighboring spots cause a strong reduction in the growth rate of each
spot, in both the spanwise and streamwise directions. The growth rate normal to the wall, however, is
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almost unaffected. The differences with ELDER's findings may be attributed to a greater number of spots
and higher values of the Reynolds number.

Another important interaction reported by COLES and SAVAS is the appearance of distinct new re-
gions of turbulence to the rear of the original spots and in the gaps between them. This can be explained
by the "transverse contamination' process. What is more striking is that the new turbulent regions grow
rapidly in size while the original spots decay and disappear. This "edddy transposition" process occurs
especially when substantial regions of laminar flow exist between the spots. Such a phenomenon needs fur-
ther investigations.

3.2. The transitjon region in pressure gradients

Due to the lack of results obtained with artificially created spots, all experiments described
below were carried out in "natural" conditioms.

3.2.1. Effect of a mild positive pressure gradient

Figure 78 compares instantaneous signals recorded near the wall in cases A and B for the experi-
ments performed at ONERA/CERT /91/. Case A is the zero pressure gradient case previously described. In
case B, the flow is subjected to a mild positive pressure gradient and transition starts at a yalue of the
shape factor close to 2.8. Both signals were recorded in the middle of the transition region (H = 2), at
the same dimensionless distance from the wall (y/6 = 0.4). The local free-stream velocities are respecti-
vely equal to 33 m/s and 28 m/s.

It appears essentially that intermittency is less apparent when transition occurs in an even
slight positive pressure gradient. As it has been pointed out in § 2.3., the instability waves exhibit
large amplitudes, which make the turbulent spots difficult to distinguish. The conditional sampling tech-
niques are not easy to apply, because the choice of an appropriate detection signal is not obvious.

3.2.2. Effect of a strong positive pressure gradient

In case F, transit ion starts near the laminar separation point. It is useful to recall that the
transition location is defined as the location where H begins to decrease. The signals recorded in the
middle of the transitionm region (figure 79) do not present any trace of turbulent spots and peaks appear
on the spectra” at the frequency of the instability waves /91/.

The "turbulent" boundary layer developing downstream of the transition reglon was studied in the
same case /91/. Although the shape factor is close to 1.4, the u' fluctuations keep a long time the signa-
ture of the laminar instability waves, especially in the outer part of the boundary layer.

The disappearance of turbulent spots in the presence of a strong positive pressure gradient was
investigated in detail by COUSTEIX and PAILHAS /92/ who studied the flow development on an ONERA D profile
(chord Reynolds number : 3.2 10%). Figure 80 shows the streamwise evolution of the shape factor and some
examples of U' records. The corresponding turbulence profiles are plotted in figure 81. At x/c = 0.875,
the signal contains essentially instability waves ; the root-mean-square value represents about 12 per
cent of the free-stream velocity. Further downstream (x/c = 0.925), high frequency fluctuations are super-—
imposed on the primary wave. At the last station, the shape factor has a nearly turbulent value (H=1.7),
but the velocity fluctuation remains practically periodic. Measurements performed with two hot wires
displaced in the spanwise direction indicated that the primary oscillation is two-dimensional, at least up
to x/c = 0.90. The power spectra reveal that the passage from the "laminar" to the "turbulent" state is
accomplished by a progressive appearance of harmonics or subharmonics of the primary wave. These observa-
tions agree with visualizations made in water tunnel (WERLE /93/) in the case of leading edge separation
bubbles : the instability waves take the form of regular, two-dimensional rollers, which loose progressi-
vely their individuality due to the turbulent diffusion process. Peak-valley systems, spikes or spots are
never observed. Other experiments /44/ led to the same conclusions.

3.2.3. Effect of a negative pressure gradient

To our knowledge, detailed studies of the transition region have never been made, at least for

low free—stream turbulence levels. Scme information is available at higher values of T. TURNER /45/ deter-
mined the variation of the heat transfer coefficient along a cooled turbine blade ; BLAIR and WERLE /46/
measured the mean velocity and temperature profile along a slightly heated wall. In such cases, transition
starts at low Reynolds numbers, but it sometimes extends over large downstream distances : TURNER studied
a configuration (T = 2 10-?) in which transition occurs at x = 1.5 cm but is not terminated at the blade
trailing edge (x = 7 cm). Such experiments provide good tests for practical calculation methods (see Chap-
ter II).

3.3. The transition region in oscillating external flow

It was already noted (§ 2.4.) that the turbulent patches appeared as quasi two-dimensional ribbons
or belts, extending across the flat plate, provided that the relative amplitude N be large enough (say, N
of the order of 0.1).

Let us return now to figure 41, which shows the space-time spreading of wave packets and turbulent
regions for a periodic transition. The slopes of the curves marking the limits of the turbulent regions
give the propagation velocities of thé patches. The average values of OBREMSKI-FEJER /48/ are 0.88 U, and
0.51 U, for the leading interface and trailing interface speeds, respectively. COUSTEIX et al. /49/ found
similar values (0.89 U, and 0.48 U,). The corresponding propagation speeds of the three-dimensional spots
were 0.89 Uy and 0.50 Ug on the plane of symmetry (WYGNANSKI et al. /84/, see § 3.1.2.). It appears that
the streamwise turbulence spread presents striking similarities for steady and unsteady boundary layers.
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Other similarities become more apparent when ensemble velocities are computed. Figure 82 presents
ensemble averages of the streamwise velocity at a station where the intermittency factor is close to 0.5
(COUSTEIX et al. /49/). The upper curve represents the evolution in time of the free—stream velocity. As
in steady flow, the signature of the turbulent patches manifests itself close to the wall by rectangular
velocity steps. Towards the boundary layer edge, the turbulent velocity becomes lower than the laminar one.
Figure 83 shows instantaneous velocity and turbulence profiles obtained at the same station at different
times during a cycle. As the turbulent region is entered, the increase in the boundary layer thickness is
more pronounced than in steady flow (figure 73), but the overall evolution is the same. On the other side,
turbulence profiles measured inside the turbulent patches are not far from those measured in a steady tur-
bulent boundary layer.
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CHAPTER II

TRANSITION PREDICTION
AT LOW SPEED

1 — INTRODUCTION

The problem considered here is how to predict the position and the extent of the transition in
a two-dimensional, incompressible flow developing under the influence of various factors. This prediction
is all the more difficult as the fundamental mechanisms of the transition process are far from being fully
understood. However, advanced design of aerodynamic vehicles or turbomachinery airfoils needs practical
procedures combining acceptable engineering accuracy with simplicity and speed. Most of the methods des-
cribed in this paper do not claim to represent the intricate physics of the transition process : they only
constitute possible short term answers to practical problems.

The first difficulty is to predict the location of the transition onset. For transitions trig-
gered by small amplitude disturbances, the linear stability theory provides us with a useful guideline,
even if the non linear phenomena, occuring just before breakdown, are disregarded. But, due to the com—
plexity of the governing equations, simpler empirical correlations have been often used. In the last ten
or twenty years, the advent of high speed computers made it possible to solve sets of partial differential
equations in which empirical information is able to lead to a "numerical transition". As it will be seen
later on, these various techniques are not really antagonist, but rather complementary.

The second problem concerns the boundary layer development from the laminar to the turbulent
state. The most obvious way to compute it is to assume that transition is a point-like phenomenon and
to overlap the laminar and fully turbulent parameters at this point. Although this crude method may be
substantiated in some cases, it does not apply to other configurations : on the pressure side of a tur-
bine blade, for instance, TURNER found that transition extends over 70 per cent of the chord. So, practi-
cal methods able to describe the transition region have been developed ; they allow a smooth junction with
the more classical turbulent computations and will be discussed at some length.

2 - CALCULATION METHODS BASED ON STABILITY CALCULATIONS

2.1. Stability diagrams and envelope curves

Let us recall that the small, two-dimensional disturbances introduced in the laminar boundary
layer are related to a stream function § ; using the spatial theory, its expression is

Vix, v, t) = Ply)e ¥* oilarx = wt) -

P, 0y, O and w represent respectively an amplitude function, an amplification (or damping)
coefficient, a wave number and a circular frequency.

Introducing u' = 3y/3x and V' = - 3Y/9x into the continuity and linearized NAVIER-STOKES equa-
tions, one can obtain the ORR-SOMMERFELD equation :

PIV 202 1 4 0¥ 0= iR [(al - ) (P - 2P ) - au'P ] (2)

with o = o_ + io.. The Reynolds number R is based on the reference length and on the reference velocity
which made all quantities dimensionless. Equation (2) plus boundary conditions constitute an eigenvalue
problem which has only solutions if a secular relation of the form :

F(ocr, o, W, R) =0 3)
is satisfied. For a given mean flow profile U(y), the results of numerical computations can be represented
in a (w, R) diagram ; the neutral curve (0, = 0) separates the region of stable from that of unstable

disturbances (figure 1). The critical Reynolds number is defined as the Reynolds number below which all
waves are damped.

The total amplification rate of a single frequency is defined as

I [
=exp |- J aidx = exp |- R, o TR dR (4)

(o]

&l

A is the wave amplitude and the index o refers to the streamwise position where the wave becomes
unstable. Figure 2 shows total amplification curves corresponding to various frequencies, obtained for the
BLASIUS profile. The dashed line represents the envelope of these curves, which will be called n :

n = Max (&), at a given x or R (5)

It is obvious that n = 0 for R = Rop-

The same type of calculation can be performed for the other similar velocity profiles of the
FALKNER-SKAN family. Each profile is characterized by a lot of dimensionless parameters such as

_x du __m oy,
Ll el Pl Sh =T > A2 v ax H (shape factor) ...

For several values of H, the corresponding envelope curves are plotted on figure 3. The stabili-
zing effect of a negative pressure gradient (H < 2.59) and the destabilizing effect of a positive pressure
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gradient (H > 2.59) can be clearly pointed out : as H increases, the critical Reynolds number decreases
and the slope dn/dRS1 increases.

2,2. LIEPMANN's method

LIEPMANN /1/ was the first who attempted to use the linear stability results for practical ap-
plications. He hypothesized that breakdown to turbulence occured when the Reynolds shear stress T = - pu'v'
due to unstable waves, became equal to the laminar wall shear stress T

I
T 2 [ d! 2 —u'v v! u® 2 ;
o T ] -k ©
L £ e fLlu v u' e f
At transition, (1) =2 & At ()" ] -y ™
> t,'max C o A
2 £ 0 max
A

The theory provides the values of K and (Ao)max’ but the initial amplitude A0 remains unknown.

As it will be seen later, VAN DRIEST and BLUMER developed a simple prediction method based on LIEPMANN's
idea.

n
Podc e7, ee, e® and e methods

These methods have been developed independently by SMITH and GAMBERONI /2/ and by VAN INGEN /3/.
In the general case where the flow is not of a constant B, -type, these authors calculated at first the
laminar boundary layer development ; the second step was ?o use the stability charts established by PRETSCH
for self-similar velocity profiles ; the envelope curve was obtained by computing the growth of waves of
different frequencies. SMITH and GAMBERONI compared stability calculations with measured transition points
and transition was found to occur when n = 9. This means that transition occurs when the most unstable
frequency is amplified by a factor e®. The same result was obtained by VAN INGEN, but with the exponential
factor equal to 7 or 8.

More recently, WAZZAN, OKAMURA and SMITH /4/ and JAFFE, OKAMURA and SMITH /5/ improved the ori-
ginal approximate calculation technique, and VAN INGEN extended the method to cases including suction or
separation bubbles /6/. As pointed out by MACK /7/, "the method remains essentially as originally deve-
loped, and the key to success still lies in a judicious choice of the value of the exponential factor."

Therefore, it seems obvious that a transition criterion should be based on the disturbance ampli-
tude and not on its amplification ratio. Thesuccess of the e’ method is certainly due to the fact that the
experimental data were obtained in wind tunnels where the disturbance environment was similar ; in parti-
cular, the free-stream turbulence level T was rather low, let say T = 0.1 1072. For higher values of T, the
transition Reynolds number decreases rapidly and the e® method no longer applies. MACK /7/ suggests an
empirical relation between T and the value of n at the transition location :

np=-8.43-2.440T (8)

This relation has been established to fit the experimental results collected by DRYDEN for the
flat plate case /8/. For T < 107%, sound disturbances may become the factor controlling transition rather
than turbulence and application of (6) may give poor results. If T = 2.98 1072, n_ = 0, which means that
transition occurs at the critical Reynolds number. If one assumes that the amplitude A reaches a constant
value at tramsition, MACK's relation indicates that the initial amplitude A, varies as T¥* |

An example of application of the so-called e” method is given on figure 4. It is relative to an
experimental case studied at ONERA/CERT, in which the longitudinal pressure gradient is positive : at the
transition location, the shape factor is equal to 3 (case C in the experiments reported in /9/, /10/). The
figure shows the total amplification curves for five different frequencies. By introducing the experimen-
tal value of T (T = 0.15 107?) into relation (8), onme obtains n, = 7.2, which corresponds on the envelope
curve to x. = 0.58 m. This value is in close agreement with the experimental transition location. Similar
comparisons have been made for other cases and are reported in /11/. It appears that MACK's relation can
be extended to adverse pressure gradients.

2.4. Amplitude method

MACK /7/ has proposed a more ambitious approach by considering the total perturbation energy Ad?.
The main elements of this theory can be summarized as follows

2
. Ad? results from the integration of individual energy densities A? = (é}) Ag over the range
0

of the unstable frequencies taken in the most unstable directions.

. q q . o ¥ g q .
. For a given frequency and a given wave orientation, the ratio 2 1s given by the classic re-

. . . - . Q
sults of the linear stability theory and the initial amplitude A, 1s related to the free-stream turbulence
component having the same frequency and the same orientation ; there is no cross spectral transfer of
energy.

. The free-stream turbulence is characterized by its intensity T and a length scale A. As a
result of some assumptions and simplifications, Ad? is found to be a function of T and RA = Ugh/v.

. Transition occurs when Ad = K U,. MACK adopted the critical value K = 0.04 in order to fit the
experimental flat plate data.

A typical result of the amplitude method is that it gives a decrease of 16 % in Rxp at T = 0.02 1072
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as RA increases from 1 10" to 8 10%, Unfortunately, the validity of this method camnot be exactly checked,
due to the lack of experimental information.

3 - TRANSITION CRITERIA

In the following lines, the word criterion can be interpreted as a more or less empirical cor-
relation between boundary layer parameters at the transition onset. These parameters may be some charac-—
teristic Reynolds number or a similarity variable, among others. The transition criteria are often used
for practical applications, because they are easily introduced in engineering prediction methods such as
integral methods. Although the fundamental mechanisms of the transition process do not appear as clearly
as in the stability calculations, they provide a fairly acceptable compromise between accuracy and sim-
plicity.

Historically, the first proposed criteria took only into account the pressure gradient effects ;
more recently, it was possible to introduce in addition the influence of the free-stream turbulence. Both
aspects will be examined successively.

3.1. Pressure gradient effects

In these criteria, the free-stream turbulence level is implicitly assumed to be low.

a) MICHEL /12/, 1951 - For two-dimensional flows over airfoils, MICHEL correlated the values of
two Reynolds numbers at transition, RO and Rx. This criterion is plotted on figure 5. The mean curve may
be fitted by the following expression :

RO, = 1.535 R 0444

. " ©)

For the BLASIUS solution, this relation gives RST = 1 180, which is close to the experimental
value found by SCHUBAUER-SKRAMSTAD /13/.

b) GRANVILLE /14/, 1953 - GRANVILLE developed a correlation whichtakes into account two impor-—
tant parameters, namely the stability properties and the flow history :

. The stability of the boundary layer is characterized by the difference in momentum-thickness
Reynolds numbers from the neutral stability point to the transition locatiom.

. As the amplification of disturbances depends on the cumulative effect of pressure gradient,
an averaged POHLHAUSEN parameter is introduced :

*1

= 2

AZ % J X .j; %T igf e
T T cr cr

This criterion gives a right correlation with available data for transition on airfoils in low

turbulence wind tunnels and on wings in flight tests (figure 6).

c) CRABTREE /15/, 1957 — This criterion correlates transition data by using two simple parameters
the momentum-thickness Reynolds number and the local POHLHAUSEN parameter at the transition point (figure 7).

d) Transition criteria in separation bubbles - It was shown (Chapter I) that, if the chord

Reynolds number of a given airfoil is small, laminar separation may occur, followed generally by a tran-
sitional bubble. An accurate prediction of the transition point is needed in order to compute the down-—
stream effects of the bubble : a delayed transition would cause the bubble not toreattach and the calcula-
tion would fail ; on the other hand, with a too early transition, the increase in momentum thickness would
be too small and the downstream turbulent calculation would not be significant. In a general way, problems
involving separation bubbles are not treated with criteria such as thosedescribed above, but rather with
specific criteria,

A transition criterion in separation bubbles was established by HORTON /16/ and modified by
VINCENT DE PAUL /17/. Once the laminar separation abscissa xg has been found, it is assumed that there is
a sudden transition at a point xp, defined as follows :

- fth Lo K
%y = %, =L, with 5 (10)

where the subscript s corresponds to the separation point. K is a constant for HORTON (K = 4 10") and a
function of ROg for VINCENT DE PAUL.

Another criterion is used by KWON and PLETCHER /18/, where the onset of tramsition is given by :

Rx., = 1.059 RO+ 47 720
T s

3.2. Free-stream turbulence effects with zero pressure gradient

The free-stream turbulence is characterized by its root-mean-square value, defined as
(U') v T 1
T=—7F"2 or =(/ u'? +v'2 +w'2) /)y
Ue e e
By reviewing the literature, HALL and GIBBINGS /19/, 1970, concluded that transition occurs when

RO reaches a value depending on T and given by the empirical expression :

RGT = 190 + exp (6.88 - 103 T) (1)
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As concerns the transition length, HALL and GIBBINGS proposed :

RGE = 320 + exp (7.70 - 44.75 T) (12)

where RGE is the momentum-thickness Reynolds number at the end of the transition region (figure 8).

3.3. Combined effects of pressure gradient and free-stream turbulence

a) VAN DRIEST and BLUMER /20/, 1963 - As the previous ones, the criterion proposed by VAN DRIEST
and BLUMER is based on experimental data ; nevertheless, it includes theoretical elements. The authors
consider the ratio of the local "turbulent" stress p22 (3U/3y)?to the local viscous stress p(3U/3y). As &
is proportional to y, this ratio is proportional to y2/v . 9U/9y. At transition, it is assumed that

2
Max (X~ EH) = constant = Tr (13)
v 9y
y T
2
%T %g is called the vorticity Reynolds number. For the BLASIUS profile, the maximum of this

quantity occurs at y/8 = 0.6 ; it is approximately the altitude where the breakdown to turbulence has
been observed in laboratory experiments. The FALKNER-SKAN similarity profiles and the TAYLOR's relation
between pressure fluctuations and velocity fluctuations are then used and Tr is expressed by :

%§-= A + BA + CRS (T)? (14)
_ 82  dUe _ U8
where A = o8 o and R(ST = (—\) )T

Tr, A, B and C are adjusted to fit the experimental data :

Tr = 9 860 B = - 0.0485

(15)
A =1 C= 3.36

Other expressions of this criterion can be deduced from the wedge-flow solutions, where the

external velocity is proportional to x , where m is a constant ; the most useful correlation is expressed
under the form :

RST = f(Az; T) (16)

Relation (16) is presented on figure 9.

b) DUNHAM /21/, 1972 — Experiments dealing with combined effects of pressure gradient and free-—
stream turbulence are rather scarce for non zero pressure gradient. However, DUNHAM attempted to correlate
the few existing results and proposed :

RO, = [0.27 + 0.73 exp (- 80 )] [550 + 680 (1 + 100 T - 21 AZT)"l] (17)

A family of curves given by this relation is shown in figure 10. For T = 0 and A = 0, the value
of RQT is finite and equal to 1 230.

c) SEYB /22/, 1972 - SEYB proposed an empirical correlation which may be expressed as follows

2.62
1000 0.0 + Ay 2
RO =37+707 * 10 Go106 v 3.6 @ (18)

This relation is valid for 0.1 1072 £ T € 4 1072, If T falls outside this range, RO, is assumed
to be equal to the appropriate limit. FOREST /23/ used relation (18) with some modifications.

d) ARNAL, HABIBALLAH and DELCOURT /24/, 1979 - The aim was to obtain a criterion involving the
same parameters as those introduced by GRANVILLE, R6_ - RO _ and Ké . In addition, the free-stream turbu-
lence level T was taken into account. At first, the proposed correlation was established for similarity
flows (FALKNER-SKAN family profiles) and then extended to more general configurationms.

The criterion starts with the envelope curves of amplitude ratio computed for the FALKNER-SKAN
profiles (figure 3). Each curve is characterized by a similarity parameter, such as B, , H or A, . The

POHLHAUSEN parameter A, = 62/v . dUg/dx will be considered in the following developments. The clirves plotted
on figure 3 give a relation such as :

=n (R§; or RM, AZ) (19)

_ A
n = (dn K;)max

As the critical Reynolds number is itself a function of AZ’ equation (19) can be written :
n=n (R - Recr, A2) (20)
The value of n at the tramsition location is given by MACK's relation :

n,==-28.43-2.48nT 21)

T

A combination of (20) and (21) allows to obtain a correlation of the form :

RGT - Recr (Az) = f (A2+ T) (22)
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Curves corresponding to various values of T are plotted on figure 11. A, has been replaced by
T, which will be the parameter of interest in practical applications. It can be Gbserved that the proposed
cfiterion ¢oincides practically with the GRANVILLE's one for T = 0.05 1072 to 0.1 1072, An analytical
expression of the criterion is

RO, - RO = - 206 exp (25.7 AZT) [An(16.8 T) - 2.77 AZT] (23)

Recr is calculated by one of the methods described in Chapter I.

d) Transition criteria in separation bubbles - ROBERTS /25/ extended HORTON's criterion (equa-
tion (10)) by assuming that K is a function of T.

Recent calculations were carried out at ONERA/CERT by GLEYZES, COUSTEIX and BONNET /26/ who used
a method originally developed by HABIBALLAH / 11/ for attached boundary layers. In this method, it is ob-
served that the envelope curves n{(R6) obtained for similarity profiles can be fitted by straight lines
(figure 3)

0y Rre) = S

dRO
The total amplification is then calculated step by step by the relatiomn :
R6
n= Jpg S(®) dRO
cr

GLEYZES et al. obtained values of S for separated boundary layers (H > 4.03) and assumed that
transition occurs when n reaches a critical value given by MACK's relation (equation (21)).

3.4. Remarks and applications

a) Among all the different criteria which take into account the free-stream turbulence level,
the criterion proposed by ARNAL et al. gives infinite values of RB_ for T = 0. On the contrary, the other
criteria (VAN DRIEST-BLUMER, DUNHAM, SEYB, HALL-GIBBINGS) give finite values, which are generally adjusted
on the SCHUBAUER-SKRAMSTAD experiments for the zero pressure gradient case.

b) Figure 12 presents a comparison between criteria at low values of T, in a (RGT, A, ) diagram.
In the analytical expressions of the VAN DRIEST-BLUMER and DUNHAM criteria, T is set equal to ‘T o, It is
always possible to transform any criterion in a criterion involving these variables by the use of simila-
rity relations : for example, MICHEL's correlation RGT = R6T(RxT) is converted into a RGT = RGT(A2 ) cor-

relation through the similarity parameter RO/vVRx = f(Ay). The results corresponding to the e? methgd, when
it is applied to the similarity profiles, are also plotted on that figure. It appears that large discre-
pancies exist, especially in positive pressure gradients : for A, = - 0.02 (4 =2.73), the criteria pro-
posed by MICHEL and by CRABTREE give respectively ROp = 550 and "1 150. For real and non similarity condi-
tions, however, the differences may be reduced if the criteria are employed in their original formulation.
But when the similarity conditions are approached, they will give more and more important discrepancies.

¢) An application of DUNHAM's criterion to the experiments carried out at ONERA/CERT is presented
in figure 13. The laminar values of RO at the beginning of the transition region are plotted as function
of the local POHLHAUSEN's parameter. It appears that the experimental value of T (0.15 1072) does not cor-
relate the experimental data. In the case B, for example, the criterion predicts x, = 0.8 m instead of the
experimental value x,, = 0.5 m. For the cases D, E and F, it does not give any tranSition point up to the
theoretical laminar Separation. In a general manner, the use of the local POHLHAUSEN's parameter can lead
to large errors at low values of T. The use of a mean parameter seems to be more appropriate.

d) Figure 14 shows the velocity distributions corresponding to two experimental cases : the case F
of the ONERA/CERT experiments and a case studied by R. MICHEL on an airfoil /27/. In both experiments,
transition occurs at the same value of Ay, but the momentum-thickness Reynolds numbers are very different.
However, calculations: indicate that the critical Reynolds numbers are likewise very different, so that the
difference R6,, — RO is nearly the same. This example justifies the use of this parameter in practical
criteria, at $east §6r low free—stream turbulence levels.

e) When T becomes large (say T > 0.5 or 1 1072), the linear stability process is often bypassed.
An example of such a phenomenon was studied by BLAIR and WERLE /28/, /29/, who carried out experiments on
accelerating flows subject to high free—stream turbulence levels ; the analysis of experimental results
revealed that the Reynolds number at the transition onset was lower than the critical Reynolds number
(see Chapter I). It is obvious that the criterion developed by ARNAL et al. /23/ (extension of GRANVILLE's
criterion) is unable to predict such a transition process, because R, must be greater than RO : in nega-
tive pressure gradients, the critical Reynolds number increases rapidly, as well as the differ&hce RB, - RO
(figure 11). On the contrary, the experimental values of R8,, measured at high free-stream turbulence levelS
are not far from those obtained in zero pressure gradient ~for the same value of T. This is precisely the
trend which is reflected in the criteria proposed by VAN DRIEST-BLUMER, DUNHAM or SEYB. In figure 15, these
criteria are applied to a case studied by BLATR-WERLE ; the experimental values of T and x., are respecti-
vely 1072 and 0.8 m. VAN DRIEST-BLUMER criterion gives x. ® 0.6 m, whereas the two other ctriteria do not
indicate any transition. Due to the slow boundary layer Ehickening, small differences in R can lead to
large discrepancies in x, so that these criteria are generally not very accurate in negative pressure gra-
dients.

f) The influence of parameters other than T and the pressure gradient is rarely taken into account
in empirical criteria.

Concerning the wall curvature effects, FOREST /22/ correlated the few existing experimental results
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by the relation :
GO

T
where GO = RO Vg- is the GORTLER number and

i

9 exp (- 17.3 1)

the wall curvature.

Wall suction (or blowing) results in a decrease (or an increase) of the shape factor. As pointed
out by WAZZAN et al. /30/, criteria using POHLHAUSEN's parameter are not adequate : in the zero pressure
gradient case, for example, suction will make H decrease and R§,, increase, but A_ will remain equal to
zero. A possible solution is to use the shape factor as a new parameter instead ~ of A2.

Wall roughness effects are difficult to introduce in practical calculation methods. The experi-
mental results described in Chapter I may be considered as empirical rules for boundary layer tripping
purposes.

4 = TRANSITION REGION CALCULATIONS BASED ON INTERMITTENCY METHODS

Let us assume that the transition onset is known. A second objective is to compute the transi-
tion region itself, the extent of which may be as long as the laminar region which precedes it. An impor-
tant parameter characterizing the transitional boundary layer is the intermittency factor Y, which repre-
sents the fraction of the total time that the flow is turbulent. The numerical models we will describe
in this section are based on the so-called "intermittency method", in which laminar and turbulent quanti-
ties are weighted by y. In fact, experiments show that for strong positive pressure gradients, transition
process no more involves turbulent spots and intermittency phenomenon (Chapter I). However, numerical
results indicate that the use of an intermittency function can provide satisfactory results. Thus, the
first task is to describe the streamwise evolution of the intermittency factor. Computations based on
transport equations models do not need the knowledge of Y and will be presented in section 5.

4.1, Evolution of the intermittency factor

SCHUBAUER and KLEBANOFF /31/ measured the streamwise evolution of y for various flat plate ex-
periments. The length of the transition region varied from one case to another, but the intermittency
distribution conserved the shape of the Gaussian integral curve. The standard deviation o was determined
for each experiment, and all data collapsed onto a single curve when Yy was plotted as a function of
(x - x)/0 , where x = x(y = 0.5) (figure 16). However, this result does not constitute a calculation me—
thod for determining y, because the values of x and 0 must be known.

DHAWAN and NARASIMHA /32/ proposed another universal distribution of intermittency for flat
plate experiments :

Y =1 - exp [:— A (x - xT)z/P] (24)
with A = x (y = 0.75) - x (y = 0.25)

A compatibility relation implies that A = (V&nk - vZn37%)? = 0.411. If, for a given experiment,
Xp is known, the curve y(x) cannot be determined unless A is also known. For this, the authors correlated
experimental data by the following relation :

0.8
Yol _ s lexr (25)

Under the assumption that turbulent spots appear randomly with a source rate density g, EMMONS
/33/ has shown that the intermittency factor at a given point P can be written as

Y=1-exp (- ]- gdV) (26)
R
where R is the influence volume of P, defined by the locus of all points which influence the state of tur—

bulence at point P. By assuming that g can be approximated by a DIRAC's delta function, CHEN and THYSON
/34/ obtained an expression valid for plane or axisymmetric flows

r r
Y=1-exp<—GrT |:[ de][f [dj_: > 27
T Ty

r is the body radius and G is a function of Rxp and Mach number. For plane, incompressible flows, (27)
takes the following form :

X
= = d
Y =1 - exp [-8.33 107*Rx*"*° U, ixTT’z‘-ﬂ LT U—: (28)

More recently, experiments performed at ONERA/CERT /9/ with zero and positive pressure gradients

have shown that the momentum thickness 0. at the end of the transition region was about twice the momen—
tum thickness ST at the transition onset. Therefore, relations of the form :

0 RO
Y = £(3) or v = f(s— (29)
GT RGT

were adopted. They will be discussed later in more details.

4.2, Local equations in the transition region

At a given point in a transitional boundary layer, an instantaneous signal shows the successive
appearance of turbulent spots and of laminar regions. In the following lines, all quantities related to
the turbulent spots (respectively to the laminar regions) are denoted by the subscript t (respectively £).
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An intermittency function I(t) is introduced ; its value is 1 inside the spots and 0 cutside the spots.
The intermittency factor Y is the time averaged value of I(t), and the "global" mean velocity U can be
expressed as :

U=yu, + (-7 0, (30)

Similar relations are valid for the other components for the mean velocity. The root-mean-square
value of the longitudinal fluctuation is given by :
1z 13 _ 1o - _ 2
u yugz + (L -y) upz + y(l N, -1y 3

G. VANCOILLIE /35/ deduced a set of equations which apply separately to the turbulent and lami-
nar regions. He assumed that the spots are two-dimensional (wl = Wt = 0) and that Yy depends on x only.
Concerning the mass conservation, the basic equations are :

Bu(t) , dv(t) , Bw(®) _

9x 3y dz (2
OO L o BO 5O o RO

(32) and (33) are combined and the time average is taken, so that the "zone averaged" continuity
equations can be obtained :

oYU v, _dr
o At ===
x dy dt (34)
31 - YU, . 31l =YV, _ ar
Tt TS (0D

Adding /34/ and /35/ yields the continuity equation for the global averaged velocity.

Similar operations lead to the "zone averaged'" momentum equations :

U U 1 dp 9 U —_

oded ol ot = =~ == = S2=he, Oradj

U, el Vt 5y 5 A + 3y (v 3y ué Vé) + additional terms (36)
3Ug Bvg _ 1 dp 3 . 8Ug v -

Ul ol Vg 3y o + 3y (v 3y uy VR) + additional terms 37)

The additional terms express the interaction at the interface between the turbulent spots and the
surrounding laminar flow.

The modelling of the source terms inequations (36), (37) is described in /35/. The final set of
equations to be solved is :

Q@
=
+
[s54
&
]
[}

ox oy
oup, . e _ _Lde, 3  30p [y, 0%-Ur L _av

Upax * Vg, dy pdx+3y 5 By) LA 51 1 - vy dx

au v 1 d

i R (38)
U U 1dp . 3 U ug - U, dy
—t —t = - = — = ot S R

U 5% ¥ Ve dy p dx * dy (G + Vt) dy )+ Y dx

Up - Uy 1 dy
+1300 v 51 Y dx

The eddy viscosity v_ is calculated with the k-€& model, which gives, in fact, kt and €_, because
the transport equations are soived in the turbulent regions only. All source terms are proportiomal to
dy/dx, so that a constant value of Yy will produce two boundary layers growing independently.

For numerical.applications, the curve y(x) is given algebrically. The computer code provides the
£ Ul’ e Vl’ kt and €, profiles. In fact, the quantities measured in laboratory experiments are U and

u'2, which are related to the zone averaged quantities by equations (30) and (31). For the purpose of com-
parison between calculations and experiments, it is assumed that uiz = 0 and u;Z = kt’ so that u'2z is cal-
culated by :

U A

we=yk +y A=Y (ut-ug)2 (39)

Examples of results are presented in figure 17. The experiments have been performed at ONERA/CERT
on a cylinder with zero pressure gradient /36/. The two considered stations are located in the middle
(y = 0.58) and towards the end (y = 0.85) of the transition region. A remarkable fact is that the numerical
model predicts fairly well the complicated shape of the turbulence profiles and especially the existing
peak very close to the wall ; the difference between Ut and Ul is very large and the quantity Y(I_Y)(Ut_ul)
creates most of the "turbulence" energy.

2
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A similar agreement was obtained with the experiments of SCHUBAUER-KLEBANOFF /31/ and those of
WERLE-BLAIR /28/, /29/. The major shortcoming of this method is that the evolution of Y must be prescribed.
Moreover, it will be interesting to check its validity in cases involving positive pressure gradients, for
which there is a progressive disappearance of the intermittency phenomenon.

4.3, Simpler methods

Many of the practical engineering methods are less sophisticated and work only with the conti-
nuity and the momentum equations for the global mean flow :

U 9V

2488 - 9

9x dy €40)
33U u_ 1 @4 3 3 _ oow

UaX+V.ay pdx+3y(\) u'v')

In the calculation method developed at ONERA/CERT /37/, the turbulent shear stress is expressed by a
modified mixing length scheme :
- 2
-WVT =y R 2t G 41

The mixing length £ and the wall damping function F keep the form already used for fully turbu-
lent boundary layers /38/ :

% = 0.085 § tanh (4.823 %) (42)
F =1 - exp[/7p2/10.66 1] (43)

where T is the total shear stress. The low Reynolds number effects are included in the factor Yy, which may
be considered, at first sight, as an intermittency factor, because it must increase from zero in laminar

flow to unity in turbulent flow. Y is assumed to be a function of S/ST, and first numerical comparisons
were performed by considering :

Y=l-exp [45 -1 (44)
T

Examples of results are given in figure 18 ; comparison is made with an experimental configuration
where transition occurs in a mild positive pressure gradient (case D of the ONFRA/CERT experiments). The
streamwise evolution of Y looks like the one predicted by SCHUBAUER-KLEBANOFF or DAWAN-NARASIMHA (see § 4.1.),
but the computed shape factor falls too slowly and the skin friction coefficient is underestimated. A better
agreement is achieved when Y is constrained to have an overshoot, well above unity (figure 18). It is clear
that y does not represent the physical intermittency factor ; it is referred as ¥ in figure 18. Nevertheless
we keep the assumption that ¥ depends on e/eT only.

In fact, the global shear stress u'v' can be expressed as function of the zone-averaged quanti-
ties by :

u'v' = vy ué T (1 -7 ué vé + vy (1 -7 (Ut - UZ) (Vt -V (45)

2)
where Y is the "true" intermittency factor. (45) differs highly from (41), in which the zone averaged mean

velocities do not appear. This explains why the multiplicative factor in (41) cannot represent the true
intermittency factor.

CEBECI /39/ used an expression similar to (41), the intermittency factor being expressed by the
relation (28) proposed by CHEN and THYSON.

FOREST /22/ presented a technique somewhat similar to the previous ones. The shear stress is
modelled under the form :

e 2 2
-u'v' = YL, (%;l) +Cp T UL (46)

% is the classical mixing length. £ is a modified mixing length taking into account the stream—
lines curvature (Qc = % on a flat surface). C_ and T represent a correlation factor and the free-stream
turbulence level réspectively. The "intermitténcy'" factor y is defined through a lag equation of the form :

Y _ Ye-¥ 3
dx L (47)

where L is a lag distance. Yo 1s expressed as :
Yo u 1 - (=) -7y (48)

Y. is zero on smooth or convex surfaces. On concave surfaces, it depends on the ratio G8/GS,.,
where GO represents the GURTLER number R6v/8/R. The classical intermittency factor was successfully applied
to experimental cases involving high turbulence levels and large acceleration effects.
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4.4, Integral methods

The intermittency method,can be easily introduced in integral calculation methods, as it was done
at ONERA/CERT /24 /. The boundary layer development is computed by using the integrated momentum equation
(Von KARMAN's equation) and an auxiliary equation (entrainment or mean energy equation). The closure rela-
tionships are deduced from self-similarity solutions, and are obviously different in laminar and in turbu-
lent flows.

At a given point in the transition region, the laminar relationships give "fictitious" laminar
characteristic parameters, such as the shape factor H, and the skin friction coefficient C_,. In the same
way, Ht and C ¢ 2re obtained from the turbulent relatIonships. The characteristic parameters of the tran-
sitional boungary layer are then expressed as

H

yHt + (1 -7v) Hl

- (49)
Gf = YCge (L =) Cpy

with vy = 1 - exp (4.5 CéL - 1))
T

Figures 19 and 20 present some applications of this technique. In the experiments reported in
figure 19, the transition occurs in a positive pressure gradient, with a relatively low free-stream turbu-
lence level. The transition onset is determined with the criterion described in § 3.3.c¢). Figure 20 shows
a comparison with the experiments performed by WERLE-BLAIR in a negative pressure gradient, for two high
values of T : 1 1072 and 2 1072, The transition position is imposed in the calculation method, because the
criterion no longer applies (see § 3.4.e)). In any case, the experimental evolution of the boundary layer
parameters in the transition region is fairly well reproduced.

A similar technique was developed by CLEYZES, COUSTEIX and BONNET /26/ for computing short sepa-
ration bubbles. In this case, a "direct" boundary layer method (the external flow is given) cannot be used,
because it leads to a singularity in the vicinity of the zero skin friction point, except if the pressure
gradient fills up a compatibility relation. This adjustment is made possible by an inverse mode formulation
of the problem : the external velocity 1s the solution of the boundary layer equations, the distribution
of 61, for instance, being the input of the calculation. An inviscid calculation must be associated, through
a viscous-inviscid interaction procedure.

Figure 21 shows a comparison between experiments and theory, for a case in which T = 0.4 10-2,
The overall agreement is satisfactory. In particular, the validity of -the transition criterion described
in § 3.3.d) seems good, owing to the correct prediction of either the size of the pressure plateau or the
evolution of the shape factor in the vicinity of reattachment.

5 — TRANSITION CALCULATIONS BY TRANSPORT EQUATIONS

During the last two decades, calculation methods using transport equations have been developed
and applied to more and more complex turbulent flows. In addition, attempts have been made for extending
the range of applications of such methods to the prediction of transition phenomena. For this, additional
terms or empirical functions have been introduced in the fully turbulent form of the equations ; they de-
pend usually on the "turbulence Reynolds number" Rt’ which represents the ratio of the turbulent shear
stress - u'v' to the viscous shear stress V v -

The numerical problem is to solve a set of parabolic partial differential equations with appro-
priate initial and boundary conditions. These equations are the continuity and momentum equations, plus
one, two or more transport equations for turbulent quantities. The calculation starts in laminar flow with
specified initial profiles and proceeds step by step in the streamwise direction. If the turbulent quanti-
ties are amplified, "transition" may occur, in this sense that the shear stress - u'v' becomes large and
modifies the mean velocity profile.

These methods present the advantage that a single run is needed for the computation of the laminar,
transitional and turbulent boundary layer. A second advantage is that the influence of some important fac-
tors acting on the transition processes appears naturally under boundary conditions : the pressure gradient
effect is included in the momentum equation, and the free-stream turbulence level represents the value of
the turbulent kinetiec energy at the boundary layer edge. The major shortcoming, however, is that the set of
constants and functions used to describe transition should be regarded as an empirical information and
cannot explain (or contain) the fundamental mechanisms.

5.1. Basic equations

The basic equations that govern an incompressible, two-dimensional boundary layer are :

U oV

=t 5y 0 (50)
3, 8 _ oy U, d B o

W ox v dy Ue dx * Jy 8 dy R (1)

The momentum equation (51) contains the double correlation u'v', which is an element of the
Reynolds stress tensor. The complete equations for the turbulent shear stresses ui u! in a two-dimensional
flow can be written as : d
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t

D u'u! U U, du

! Bu!
i T e SO Sl e s IS it
Dt kj Bxk i Bxk Bxk Bxk
(N J A L~
Convection Production Dissipation
(52)
du! du! e
p' i _Jdy 3 oo, pl ' Ty oy 9 Tt
Yo Gt o) T E it Gyt e - v g (uju)
ki i k k
- J N ~ J
Redistribution Diffusion

By adding the equations for the normal stresses (i = j),one can deduce an equation for the turbu-
lent kinetic energy k = 1/2 (u'2 + v'2 + w'2)

du! 2
DE u'v' 0 2V (7 4+ & (v ék) + turbulent diffusion (53)
Dt dy 3xk dy dy

——v oU A
Due to the boundary layer assumptions, the production terms reduce to - u'v' 5; . The redistribu-

tion term vanishes by use of the continuity equation. The modelling of the dissipation and diffusion
terms is discussed below.

5.2. Earlier methods

a) One-equation model - In fully established turbulent flows, the turbulent kinetic energy equa-
tion is commonly used in addition to the classical eddy viscosity formulation :

tl4) \1/2

— 1 1 = —_— =

u'v v, 3y with v, (2a,k) L (54)
The dissipation € is given by :
(2a k) ¥/
G (55)
and the turbulent diffusion term is expressed by a gradient formulation :
Turbulent diffusion = ji—(C v ék) (56)
9y k't 3y

L = L(y) is a length scale which is given analytically. a, and €, are constants. GLUSHKO /40/
R 1 k.
extended this model to low Reynolds numbers by assuming that :

v, = b (2alk)‘/2 L
(2alk)3/2

_ vk
€ =0.6377 + by = (57)
Turbulent diffusion = Ji—(gc v QE)
dy k't 3y
q vk L _
hl’ h2 and g are known functions of Rt =y - They are equal to zero for Rt = 0 and tend to

unity for large values of Rt' The additional term in the expression of € becomes negligible in fully tur-
bulent flow.

BECKWITH and BUSHNELL /41/ (1968) used this model in the flat plate case, by starting the calcula-
tion in laminar flow. The shape factor remained at first constant and then abruptly decreased at some va-
lue of Rx. Multiplying the diffusion term by 3 increased the "transition" Reynolds number (figure 22).

b) DONALDSON's model /42/, 1969 - DONALDSON presented a turbulence model in which the transport

equations for u'2, v'2, w'2 and u'v' were solved. By modelling the high-order correlations, he introduced
a scale length A, which was not y-dependent. As an example, the u'2-equation takes the final form :

. 2
Du'? _ ——v 85U vz 39U u'’ 2k L2k 2 3 ¢y ou’
(58) nt——2(uv ay+u ax)_zver)\(’%_u)+3~}7-[(v+>\v)3y]
e L. ~ A S - == J N — J
Conv. Production Diss. Redistribution Diffusion
RTLS
'-'-L'"-:|

Most of the computational runs were made with initial disturbance
profiles looking like the ones illustrated on the picture. Their shape is
that of a spike of breadth Ay = 0.2 § applied at y = 0.3 §. The scale length y//é
A represents the wave-length of the disturbance and remains constant during
the run. When the calculation proceeds downstream, the turbulent kinetic ener- 2 t
gy increases or decreases, depending on the values of A and of the Reynold o 1

’ ynolds [xy
number. This attempt to establish a link with the linear stability theory
was interesting, but, on a practical point of view, no direct comparison with experiments was presented.
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5.3. Two—equation models

These models solve the turbulent kinetic energy equation and a second equation for a turbulent
length scale £. More exactly, the second equation describes the behaviour of a combination of k and %,
such as € ~ k%/2 7!, 1In fact, all these models have a similar general form, differing mainly in some
empirical coefficients and in the low turbulence approximations.

a) k-€ model - This model retains the k-equation and an equation for the dissipation rate €. Clo-
sure assumptions have been developed by HANJALIC and LAUNDER /43/ for fully turbulent flows ; JONES and
LAUNDER /44/ intvoduced supplementary terms for taking into account the effects of small values of R,.

The final form of the equations for k and € is as follows :

Dk _—rov 3U ad/2 2o 2%
pe %V By—€+ 2\)(3y)+8y[(\)+ck\)1:)3y]

esmay £ g e 2’ ain e
Dt Cel kY dy 2 C€2 k"’ 2v Ve dy2 * dy E(\) * Cevt) 'c)y]

— JU ' 2 2
- ty!' = == =
with u'v Vt o and vt fu (Zal) i

(58)

The terms set in a frame are those added by JONES and LAUNDER. f and f, represent empirical func-
tions of R_. The two other terms have been introduced in order to obtain a correct evolution of k in the
viscous suglayer of a turbulent boundary layer. Ck, CE 3 Cel’ C€2 and a, are numerical constants.

b) k-w model - The transport equation for k appears in this model together with an empirical
equation for the turbulent vorticity energy w? = k=2, The turbulence model was at first developed by
SAFFMAN and WILCOX /45/ for fully turbulent flows and then extended by WILCOX /46/ to cases involving
transition calculations :

Dk U _ 2 2 3k
bt = [£] 2k gy - @ap?® wk v 5 [+ cupg2]

59
Dw? _ 2 39U 2 3, 9 dw®
Se = oglF] 0 5y - 2a)? W v s [+ o) B
—r 3u k
. [ SE R, p9 =4 5 £
with u'v ( + \)t) 3y and Vv, >
Let us observe that in the k-equation, it was assumed that — u'v' = 2a,k (production term) ﬁ?d
€ = (2a1)2 wk (dissipation term). ap, O, Ck and Cw are constants and f is a given function of Rt e

More recently, WILCOX /47/ revised his model in order to develop "an alternative to the e? pro-
cedure'. The boundary layer computation consist of two phases. In the first phase, conventional linear
stability calculations are performed until the initial disturbance has been amplified by a factor of e".
In the second phase, the k-w? model is used and allows to represent non linear processes which ultimately
lead to tramsition ; the initial profiles for k and wz, as well as an important parameter included in the
low turbulence functions, are deduced from the stability computations. As these profiles are frequency
dependent, the spectral effects can be accounted for.

¢) k-kf model - ARAD, BERGER, ISRAELI and WOLFSHTEIN /48/ extended the NG's turbulence model to

the computation of laminar and transitional flows. The turbulence is defined by the kinetic energy k and
its scale £, which is expressed as :

5L=%];E(E—R)di , withk=fo B(k) dk (60)

% is the wave number and E(K)represents the one-dimensional spectral distribution of the energy. The NG's
model describes the behaviour of k and of the product k&. When the low Reynolds numbers modifications are
included, the governing equations are :

(61)
2 ©
5 el 3 (k)
3 " RERPE VAN 5 (v + CigV) "'5;"]

with

433

fl’ £ f3, f, and f]J are obviously functions of Rt et
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5.4. Other models

a) MacDONALD-FISH model - A somewhat different technique was proposed by MacDONALD and FISH /49/.
The basic equations remain of course the continuity and momentum equations, in which the turbulent shear
stress is expressed by a mixing length relation :

_ToT g2 AUV 2 _ Ze ¥ 62
u'v 3 (ay) with 5 5 tanh(0.4 6) (62)
The free-stream mixing length level, Ze, is calculated by an auxiliary equation. This equation
is the turbulent kinetic energy equation integrated across the boundary layer. In this way, there is no
partial differential equation to solve for k, but only an ordinary differential equation.

The viscosity effects are accounted for by a multiplicative function D :
T 2 52 (30,7
-u'v't =D g G5y (63)

The damping function D depends on Rt and on a second parameter in which the wall roughness
effects are included.

b) FINSON's model - FINSON solved a five-equation model /Soli_jhe dependent turbulent quantities
are the three components of the turbulent kinetic energy ETE, v'Z, w'2, the Reynolds stress u'v' and the
dissipation rate €. The production, diffusion and dissipation effects are described with approximations
commonly used in fully turbulent flows. Some additional terms are introduced for achieving the low Reynolds
number behaviour. On the other hand, the closure requirements for the redistribution terms are found to be
critical in the transition region. It should be noted that the two-equation model avoid this difficulty,
because these terms cancel in the turbulent kinetic energy equation.

In order to take into account the effects of distributed surface roughness, FINSON introduced
source or sink terms in the various governing equations. For example, the sink term in the momentum

equation is :

S = - %—p UZCD D/42 (for y < k, the roughness height) (64)

D is the mean diameter of the roughness elements, £ is the mean spacing between elements and
C, = 0.5 represents a drag coefficient. Source terms in the transport equations describe the production
oP turbulence due to the wakes of the roughness elements.

5.5. Examples of numerical results

a) Flat plate flow - Figure 23 shows the influence of T on the transition Reynolds number as com-
puted by many authors : MacDONALD and FISH /49/, ARAD et al. /48/, FINSON /50/ and ARNAL et al. /36/, who
used the k-& model. The hatched area covers the range of experimental data. The overall trend is well re~
produced by the calculations ; the FINSON's results, however, exhibit a somewhat more rapid transition
movement than that observed.

Ue,

ARAD et al. studied the influence of the length scale Reynolds number R, = —_ , where £ is )
the mean value of % outside the boundary layer. The numerical results plotted in %igure 24 for T =1 10-°,
reveal that the transition Reynolds number decreases when R, increases (the points in figure 23 have been
obtained with Ry = 211). A systematic study of the influence of €q has not been done with the k-& model.

A fairly good agreement is also achieved when the theoretical evolutions of the boundary layer
parameters are compared with the experimental ones ; in particular, the transport equations give a satis—
factory estimate of the transition region extent. Nevertheless, important discrepancies appear as concerns
the shape of transitional turbulence profiles, as it can be seen in figure 17 ; the turbulence peak near
the wall cannot be reproduced, because the intermittency phenomenon is not included in the model.

b) Effect of wall roughness - FEINDT /51/ measured the effect of distributed surface roughness
(sandpaper) on the transition location for different flow conditions and roughness heights. In figure 25,
a comparison is presented between FEINDT's measurements and calculations performed by MacDONALD and FISH
/49/ with T = 0.75 10-2, The agreement is correct, but it may be believed that the "roughness function"
has been determined in order to fit the experimental results. A reasonable quantitative agreement with
FEINDT's data was also obtained by FINSON /50/ and WILCOX /46/.

c) Effect of pressure gradient - The ability of the k-€ model to predict the transition onset has
been tested /24/ for the three velocity distributions plotted in figure 26. In all cases, the calculation
starts at the stagnation point. For x > 0.15 m, the curves() s C) and () correspond respectively to
negative, zero and positive pressure gradients. The free-stream turbulence level is low and identical for
the three computational runs.

The table reported in figure 26 presents the numerical values of H and RO at the transition loca-
tion ; they indicate that the transition Reynolds number increases in the adverse pressure gradient. This
result is completely at variance with the available experimental results. This strong disagreement is cer-
tainly due to the fact that the real transition mechanisms are linked with stability properties, at least
for low values of T, and the transport equations could hardly be expected to reproduce linear stability
theory. Let us note, however, that BRILEY and MacDONALD /52/ were able to obtain fairly good predictions
of incompressible separation bubbles by using the MacDONALD-FISH model 149/,

d) Combined effects of dP/dx and T - TURNER /53/ has reported measurements of the heat transfer
distribution on a cooled turbine blade, for three free-stream turbulence levels. For predicting such
complex flows, the enthalpy equation is introduced into the computer code. Figure 27 presents a comparison
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between experiments and k-¢£ model calculations /36/ on the pressure side of the airfoil, where the free-
stream velocity accelerates rapidly and almost linearly with streamwise distance. The dashed curves repre-
sent the results of laminar calculationms.

For T = 0.45 10~2, the boundary layer remains laminar over the entire length of the blade. For
T = 5.9 10-2, transition occurs close to the leading edge. At the intermediate turbulence level, transi-
tion starts at x = 1.5 cm and the numerical results indicate that the boundary layer is not fully turbu-
lent at the trailing edge. In all cases, the calculation reflects well the experimental behaviour. Similar
results have been obtained by PRIDDIN (as reported by LAUNDER /54/)and by MacDONALD-FISH /49/ , among others.

The analysis of TURNER's data shows that, for thé cases where transition exists, the critical
Reynolds number is never reached and that the linear stability mechanisms are completely bypassed. This
bypass was already encountered in the WERLE-BLAIR experiments (see § 3.4.) which dealt with similar expe-
rimental conditions. When the MacDONALD-FISH method is applied to these experiments, rather good results
are obtained /28/.

In a general manner, the transport equations give satisfactory results in cases involving large
values of T. In such cases, non linear phenomena preponderate and seem to be well described by the trans-
port equatioms. Moreover, some of these methods have been successfully applied to relaminarizing flows.
(The k-€ model was at first modified by JONES and LAUNDER /44/ in order to predict relaminarization). For
these reasons, the transport equations models are certainly the most efficient tools for predicting the
combined effects of high turbulence levels and of negative pressure gradients (turbomachinery problems).

6 - CONCLUDING REMARKS

Obviously, none of these presented methods is able to predict correctly transition for all prac-
tical purposes.All these techniques need the introduction of empirical data, which reduce considerably the
range of applications. These data are, for instance, low Reynolds number functions (transport equations)
or values of critical amplification rates (e™ methods). Among the many factors acting on stability and
transition, two are currently accounted for : the pressure gradient and the free-stream turbulence level ;
let us observe, however, that the latter one is only characterized by a rms value and not by its spectrum
(except in MACK's amplitude method and in some turbulence models).

At low values of T, methods based on instability theory are certainly the most accurate ones :
the pressure gradient effects appear 'maturally" through the evolution of the mean velocity profiles. The
free-stream turbulence influence is given, for instance, by MACK's relation /8/ which constitutes, in fact,
a correlation between the initial perturbation amplitude Ay and T. The link between A, and the external
disturbances is the key problem of transition phenomena : recent calculations /55/ /56/ in which the
three-dimensional NAVIER-STOKES equations were solved, gave a complete picture of the linear and non linear
development of instability waves, but the initial amplitude was imposed.

At high values of T, the laminar instability theory no longer applies and the e” methods, as well
as criteria based on this theory (/24/ /11/) are not valid. To our thinking, the transport equations can
provide fairly good results in such situations. Some empirical criteria (DUNHAM, Van DRIEST, SEYB) cover
a wide range of free-stream turbulence intensities, but correlations between ROy and a local parameter at
the transition point (A2 for instance) often lead to large errors, because the boundary layer history is
not taken into account.

On the other side, the calculation of the transition region itself does not constitute a crucial
problem. It was shown that simple methods give right predictions in very different situations. The inac-
curacies of these methods are small as compared with large errors which can arise in the prediction of the
transition onset.
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BOUNDARY-LAYER LINEAR STABILITY THEORY
by

Leslie M, Mack
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109
U.S.A.

1. INTRODUCTION
1.1 Historical background

Most fluid flows are turbulent rather than laminar and the reason why this is so has been the object
of study by several generations of investigators. One of the earliest explanations was that laminar flow
is unstable, and the linear instability theory was first developed to explore this possibility. Such an
approach tells nothing about turbulence, or about the details of its initial appearance, but it does
explain why the original laminar flow can no longer exist. A series of early papers by Rayleigh (1880,
1887,1892,1895,1913) produced many notable results concerning the instability of invisecid flows, such as
the discovery of inflectional instability, but little progress was made toward the original goal.
Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles
thus appeared to be stable. In a review of 30 years of effort, Noether (1921) wrote: "The method of
small disturbances, which can be considered essentially closed, has led to no useful results concerning
the origin of turbulence."

Although Taylor (1915) had already indicated that viscosity can destabilize a flow that is otherwise
stable, it remained for Prandtl (1921), in the same year as Noether's review paper, to independently make
the same discovery as Taylor and set in motion the investigations that led to a viscous theory of
boundary~layer instability a few years later [Tollmien (1929)]. A series of papers by Schlichting (1933a,
1933b,1935,1940), and a second paper by Tollmien (1935) resulted in a well~-developed theory with a small
body of numerical results, Any expectation that instability and transition to turbulence are synonomous
in boundary layers was dashed by the low value of the critical Reynolds number Re,,, i.e. the x Reynolds
number at which instability first appears. Tollmien's value of Recr for the Blasius boundary layer was
60,000, and even in the high turbu%ence wind tunnels of that time, transition was observed to occur
between Ret = 3.5 x 10° and 1 x 10°. In what can be considered the earliest application of linear
stability theory to transition prediction, Schlichting (1933a) caleulated the amplitude ratio of the most
amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this
duantity had values between five and nine at the observed Het.

Outside of Germany, the stability theory received little acceptance because of the failure to observe
the predicted waves, mathematical obscurities in the theory, and also a general feeling that a linear
theory could not have anything useful to say about the origin of turbulence, which is inherently
nonlinear. A good idea of the low repute of the theory can be gained by reading the paper of Taylor
(1938) and the discussion on this subject in the Proceedings of the 5th Congress of Applied Mechanics held
in 1938. It was in this atmosphere of disbelief that one of the most celebrated experiments in the
history of fluid mechanics was ecarried out. The experiment of Schubauer and Skramstad (1947), which was
performed in the early 1940's but not published until some years later because of wartime censorship,
completely reversed the prevailing opinion and fully vindicated the Gottingen proponents of the theory.
This experiment unequivocally demonstrated the existence of instability waves in a boundary layer, their
connection with transition, and the quantitative description of their behavior by the theory of Tollmien
and Schlichting. It made an enormous impact at the time of its publication, and by its very completeness
seemed to answer most of the questions concerning the linear theory. To a large extent, subsequent
experimental work on transition went in other directions, and the possibility that linear theory can be
quantitatively related to transition has not received a decisive experimental test. On the other hand, it
is generally accepted that flow parameters such as pressure gradient, suction and heat transfer
qualitatively affect transition in the manner predicted by the linear theory, and in particular that a
flow predicted to be stable by the theory should remain laminar. This expectation has often been
deceived. Even so, the linear theory, in the form of the eg, or N-factor, method first proposed by Smith
and Gamberoni (1956) and Van Ingen (1956), is today in routine use in engineering studies of laminar flow
control [see, e.g., Hefner and Bushnell (1979)). A good introduction to the complexities of transition
and the difficulties involved in trying to arrive at a rational approach to its prediction can be found in
three reports by Morkovin (1969,1978,1983), and a review article by Reshotko (1976).

The German investigators were undeterred by the lack of acceptance of the stability theory elsewhere,
and made numerous applications of it to boundary layers with pressure gradients and suetion. This work is
summarized in Schlichting's book (1979). We may make particular mention of the work by Pretsch (1942), as
he provided the only large body of numerical results for exact boundary-layer solutions before the advent
of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity
profiles. The unconvincing mathematics of the asymptotic theory was put on a more solid foundation by Lin
(1945) and Wasow (1948), and this work has been successfully continued by Reid and his collaborators
[Lakin, Ng and Reid (1978)].

When in about 1960 the digital computer reached a stage of development permitting the direct solution
of the primary differential equations, numerical results were obtained from the linear theory during the
next ten years for many different boundary-layer flows: three-dimensional boundary layers [Brown (1959),
following the important theoretical contribution of Stuart in Gregory et al, (1955)]; free-convection
boundary layers [Kurtz and Crandall (1962) and Nachtsheim (1963)1; compressible boundary layers [Brown
(1962) and Mack (1965,1969)]; boundary layers on compliant walls [Landahl and Kaplan (1965)1; a
recomputation of Falkner-Skan flows [Wazzan, Okamura and Smith (1968)1; unsteady boundary layers
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[Obremski, Morkovin and Landahl (1969)}]; and heated-wall water boundary layers [Wazzan, Okamura and Smith
(1968)]. More recent work has focussed on three-dimensional boundary layers in response to the renewed
interest in laminar-flow control for swept wings [Srokowski and Orszag (1977), Mack
(1977,1979a,1979b,1981), Nayfeh (1980a,1980b), Cebeci and Stewartson (1980a,1980b), Lekoudis (1979,1980)1.
A notable contribution to linear stability theory that stands somewhat apart from the principal line of
development has been provided by Gaster (1968,1975,1978,1981a,1981b,1982a,1982b) in a series of papers on
the wave packets produced by a pulsed point source in a boundary layer. Gaster's work on this problem
also includes a major stability experiment [Gaster and Grant (1975)].

There are a number of general references that are helpful to anyone interested in the linear theory.
Review articles are by Schlichting (1959), Shen (1954), Stuart (1963) and Reid (1965). Books are by Lin
(1955), Betchov and Criminale (1967), and Drazin and Reid (1981). Schlichting's book on boundary-layer
theory (1979) contains two chapters on stability theory and transition, and Monin and Yaglom's book on
turbulence (1971) contains a lengthy chapter on the same subject, as does the book by White (1974) on
viscous flow theory. Reviews of transition have been given by Dryden (1959), Tani (1969,1981), Morkovin
(1969,1978,1983), and Reshotko (1976). An extensive discussion of both stability theory and transition,
not all at high speeds in spite of the title, may be found in the recorded lectures of Mack and Morkovin
(1971).

1.2 Elements of stability theory

Before we get into the main body of the subject, a brief introduction is in order to orient those who
are new to this field, The stability theory is mainly concerned with individual sine waves propagating in
the boundary layer parallel to the wall. These waves are waves of vorticity and are commonly referred to
as Tollmien-Schlichting waves, or TS waves, or simply as instability waves. The amplitudes of the waves,
which vary through the boundary layer and die off exponentially in the freestream, are small enough so
that a linear theory may be used. The frequency of a wave is ® and the wavenumber is k = 27/}, where
is the wavelength. The wave may be two-dimensional, with the lines of constant phase normal to the
freestream direction (and parallel to the wall), or it may be oblique, in which case the wavenumber is a
vector k at an angle ¥ to the freestream direction with streamwise (x) component o and spanwise (z)
component B. The phase velocity ¢ is always less than the freestream velocity U1, so that at some point
in the boundary layer the mean veloecity is equal to c¢. This point is called the critical point, or
critical layer, and it plays a central role in the mathematical theory. The wave amplitude usually has a
maximum near the critical layer.

At any given distance from the origin of the boundary layer, or better, at any given Reynolds number
Re = U1x/v, where v is the kinematic viscosity, an instability wave of frequency w will be in one of
three states: damped, neutral, or amplified. The numerical results calculated from the stability theory
are often presented in the form of diagrams of neutral stability which show graphically the boundaries
between regions of stability and instability in w,Re space or k,Re space. There are two general kinds of
neutral~stability diagrams to be found, as shown in Fig. 1.1 for a two-dimensional wave in a two-
dimensional boundary layer. In this figure, the dimensionless wavenumber o8 is plotted against Rg, the
Reynolds number based on the boundary-layer thickness §. Waves are neutral at those values of od and Rg
which lie on the contour marked neutral; they are amplified inside of the contour, and are damped
everywhere else. With a neutral-stability curve of type (a), all wavenumbers are damped at sufficiently
high Reynolds numbers. In this case, the mean flow is said to have viscous instability. Since decreasing
Reynolds number, or increasing viscosity, can lead to instability, it is apparent that viscosity does not
act solely to damp out waves, but can actually have a destabilizing influence. The incompressible flat-
plate (Blasius) boundary layer, and all incompressible boundary layers with a favorable pressure gradient,
are examples of flows which are unstable only through the action of viscosity. With a neutral-stability
curve of type (b), a non-zero neutral wavenumber ((xd)s exists at Re » », and wavenumbers smaller than
(68). are unstable no matter how large the Reynolds number becomes. A mean flow with a type (b) neutral-
stability curve is said to have inviscid instability. The boundary layer in an adverse pressure gradient
is an example of a flow of this kind.

In both cases (a) and (b), all waves with ad less than the peak value on the neutral-stability curve
are unstable for some range of Reynolds numbers. The Reynolds number Re,, below which no amplification is
possible is called the minimum critical Reynolds number. It is often an objective of stability theory to
determine Re ) although it must be cautioned that this quantity only tells where instability starts, and
cannot be refled upon to indicate the relative instability of various mean flows further downstream. It
is definitely not proper to identify Recr with the transition point,

A wave which is introduced into a steady boundary layer with a particular frequency will preserve
that frequency as it propagates downstream, while the wavenumber will change. As shown in Fig. 1.1, a
wave of frequency w which passes through the unstable region will be damped up to (Re);, the first point
of neutral stability. Between (Re)L and (Re)U, the second neutral point, it will be amplified; downstream
of (Re)U it will be damped again. If the amplitude of a wave becomes large enough before (Re)U is
reached, then the nonlinear processes which eventually lead to transition will take over, and the wave
will continue to grow even though the linear theory says it should danmp.

The theory can be used to calculate amplification and damping rates as well as the frequency,
wavenumber and Reynolds number of neutral waves, For example, it is possible to compute the amplification
rate as a function of frequency at a given Re. The neutral-stability curve only identifies the band of
unstable frequencies, but the amplification rate tells how fast each frequency is growing, and which
frequency is growing the fastest., Even more useful than the amplification rate is the amplitude history
of a wave of constant frequency as it travels through the unstable region. In the simplest form of the
theory, this result can be calculated in the form of a ratio of the amplitude to some initial amplitude
once the amplification rates are known., Consequently, it is possible to identify, given some initial
disturbance spectrum, the frequency whose amplitude has increased the most at each Reynolds number, It is
presumably one of these frequencies which, after it reaches some critical amplitude, triggers the whole
transition process.
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We have divided the following material into three major parts: the incompressible stability theory
is in Part A, the compressible stability theory is in Part B, and three~dimensional stability theory, both
incompressible and compressible, is in Part. C, The field of laminar instability is a vast one, and many
topics that could well have been included have been left out for lack of space. We have restricted
ourselves strictly to boundary layers, but even here have omitted all flows where gravitational effects
are important, low-speed boundary layers with wall heating or cooling, and the important subject of
Gortler instability. Within the topies that have been included, we give a fairly complete account of what
we consider to be the essential ideas, and of what is needed to understand the published literature and
make intelligent use of a computer program for the solution of boundary-layer stability problems,
Attention is concentrated principally on basic ideas, but also on the formulations which are incorporated
into computer codes based on the shooting-method of solving the stability equations, Only selected
numerical results are included, and these have been chosen for their illustrative value, and not with any
pretension to comprehensive coverage. Numerous references are given, but the list is by no means
complete. In particular, a number of USSR references have not been included because of my unfamiliarity
with the Russian language. Much use has been made of a previous work [Mack (1969)], which is still the
most complete source for compressible boundary-layer stability theory.

PART A. INCOMPRESSIBLE STABILITY THEORY
2. FORMULATION OF INCOMPRESSIBLE STABILITY THEORY
2.1 Derivation of parallel-flow stability equations

The three~dimensional (3D) Navier-Stokes equations of a viscous, incompressible fluid in Cartesian

coordinates are % %
Gui o Bui 1 3"* % 9%
—% +u, —F = -, B e VAL
J p 2
ot Ix, 9%, (2.1a)
3 1
s
du
i 2.1b)
=2 =@ . ¢
3xi

where ﬁ*i = (E',V',ﬁ'), x: = (x',y',z'), and i, j = (1,2,3) according to the summation convention. The
égterisks denote dimengiongl qgantities, and overbars denote timg-dependent quantities, ;he velocities
a, ¥, @ are.in the x', v, z dirictions, respectively, where x is the streamwise and z the spanwise
coordinate; # 18 the preasure; ¢ is the density;" 4is the kinematio viscosity u*/o*%, with u* the
viseosity coefficient. Egquationa (2.1a) are the momentum equations, and Eq. (2.1b) is the continuity
eiuat.inn. Wa First put the Wﬁaunna in 'dimanaj.nnlaaa form with the velocity scale 1J,.2, the length scale
L, and the pressure seals 0'U,°. Both L and ur gre unspecified for the present. The Heynolda number is
defined as

H= U:L'.-"'-J.. (2.2)

The dimensionless equations are identical to Egs. (2.1) except that v‘ is replaced by 1/R, and p; is
absorbed into the pressure scale.

We next divide each flow variable into a steady mean-flow term (denoted by an upper-case letter) and
an unsteady small disturbance term (denoted by a lower-case letter):

ﬁi(x,y,z,t) = Ui(x,y,z) + ui(x:Yszvt) ’
(2.3)
b(x,y,z,t) = P(x,y,z) + p(x,y,z,t) .

When these expressions are substituted into Egs. (2.1), the mean-flow terms subtracted out, and the terms
which are quadratic in the disturbances dropped, we arrive at the following dimensionless linearized
equations for the disturbance quantities:

du, au du,
— 4+ u, — + U, = - o + szu, (2.4a)
ot j ox, j ox, 9x, i’
J J J 1
du,
il BN (2.4b)
ox, )
i

For a truly parallel mean flow, of which a simple two~dimensional example is a fully-developed
channel flow, the normal velocity V is zero and U and W are functions only of y. The parallel=-flow
equations, when written out, are

Bu,gdu L odu AU 3p 2

et U 5= Tt W w TV el + W o, (2.5a)

v, ydv o, o3y S 2

T U = TV = -3y + wWv o, (2.5b)

Byl L udw L odw _ _3p 2

e P Usg tWg, +v & = " tVWw o, (2.5¢)
gy 8, Do ) (2.5d)

Bz

These equations are in separable form, i.e., they permit the normal-mode solutions

ax dy
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[u,v,w,p]T = [@(y),%(y),w(y),0(y) 1T expli(ox+Bz-ut)] (2.6)

where ¢ and B are the x and z components of the wavenumber vector ﬁ, ®w is the frequency, and 4(y),
#(y), W(y) and P(y) are the complex functions, or eigenfunctions, which gives the mode structure through
the boundary layer, and are to be determined by the ordinary differential equations given below. It is a
matter of convenience to work with complex normal modes; the physical solutions are the real parts of Egs.
(2.6). The normal modes are travelling waves in the x,z plane, and in the most general case,0 , Band W
are all complex, If they are real, the wave is of neutral stabllity and propagates in the x,z plane with
constant amplitude' and phase veloecity ¢ = w/k, where k = (o +82)1/2 is the magnitude of k The angle of
K with respect to the x axis is y= tan’1(6/uL If any of o, R ,w are complex, the amplitude will change
as the wave propagates.

When Egqs. (2.6) are substituted into (2.5), we obtain the following ordinary differential equations
for the modal functions:

1(oU+BH-w)d + DUF = ~i0p + % [D? - (c2+82)16 , (2.7a)
1(oU+BW-w) § = -Dp + L1 [D? - (aP+p2)1% , (2.7b)
1(aU+BW-w)W + DH® = -1BP + i (02 - (o2482)14 , (2.7¢)

al + ¥ + D¢ = 0 , i (2.7d)

where D = d/dy. For a boundary layer, the boundary conditions are that at the wall the no-slip condition
applies,

G(o) =0, ®%0)=0, #O)=0 , (2.8a)
and that far from the wall all disturbances go to zero,
i(y) >0, Hy)->0, #Wy)>0asy~=. (2.8b)

Since the boundary conditions are homogeneous, we have an eigenvalue problem, and solutions of Egs. (2.7)
that satisfy the boundary conditions will exist only for particular combinations ofa,f andw. The
relation for the eigenvalues, usually called the dispersion relation, can be written as

w = QCa,B) . (2.9)

There are six real quantities in Eq. (2.9); any two of them can be solved for as eigenvalues of Egs. (2.7)
and (2.8), and the other four have to be specified. The evaluation of the dispersion relation for a given
Reynolds number and boundary-layer profile (U,W) is the principal task of stability theory. The
eigenvalues, along with the corresponding eigenfunctions @, ¥, @ and P, give a complete specification of
the normal modes. The normal modes, which are the natural modes of oscillation of the boundary layer, are
customarily called Tollmien~Schlichting (TS) waves, or instability waves.

2.2 Non~parallel stability theory

Except for the asymptotic suction boundary layer, most boundary layers grow in the downstream
direction, and even for a wave of constant frequency a, 8, &, ¥, @ and § are all functions of x (and z in
a general 3D boundary layer). What we have to deal with is a problem of wave propagation in a nonuniform
medium. Since the complete linearized equations (2.4) are not separable, they do not have the normal
modes of Eq. (2.6) as solutions. The most straightforward approach is to simply set the non-parallel
terms to zero on the grounds that the boundary-layer growth is small over a wavelength, and it is the
local boundary-layer profile that will determine the local wave motion. This approach, called the quasi~-
or locally-parallel theory, has been almost universally adopted. It retains the parallel-flow normal
modes as local solutions, but is, of course, an extra approximation beyond linearization and leaves open
the question of how important the admittedly slow growth of the boundary layer really is. It also makes
for difficulties in comparisons between theory and experiment.

The first complete non-parallel theories were developed independently by (in order of journal
publication date) Bouthier (1972,1973), Gaster (1974) and Saric and Nayfeh (1975). Gaster used the method
of successive approximations; the others used the method of multiple scales. There has been considerable
controversy on this subject, mainly because of the way in which Saric and Nayfeh (1975,1977) chose to
present their numerical results, but it is now generally agreed that the three theories are equivalent,
Gaster's calculations of neutral-stability curves for the Blasius boundary layer have since been verified
to be correct by Van Stijn and Van de Vooren (1983), and have the additional virtue of being based on
quantities that can be measured experimentally. The calculations show the non=-parallel terms to have
little effect on local instability except at very low Reynolds numbers. However, this does not mean that
non-parallel effects can be neglected when dealing with waves over distances of many wavelengths,

In the multiple~scale theory, in addition to the usual "fast" x scale over which the phase changes,
there is a "slow" x scale, X4 = €X, where € is a small quantity identified with 1/R. The slow scale
governs the boundary-layer growth, the change of the eigenfunctions, and a small additional amplitude
modulation., The disturbances are expressed in the form

w=ul® peul o, 0 (2.10)

1. The term amplitude will always refer to the peak or rms amplitude, never to the instantaneous
amplitude.



with similar expressions for v, w and p, The mean flow is given by

Uy = U0 + ..,
Wix,y) = w(O)(x1) + aee (2.11)
Vix,y) = EV(O)(X1) +oeer o

Here the mean boundary layer is independent of z, and this is the only kind of boundary layer that we will
consider in this work. Examples are 2D planar boundary layers and the boundary layers on a rotating disk,
on a cone at zero incidence, and on an infinite-span swept wing.

When Eqs.(?631) ?rf su?stitute? 3nto Eqs, (2.4) and equal powers of ¢ collected, the zeroth-order
equations for u y V 0 s W 0) and p 0 are identical to the parallel-flow equations (2,5). The normal
modes, however, have the more general form

u(o)(x,y,z,t) = A(x1)ﬁ(0)(x1,y)expﬁie(O)(x,Z,t)] 0 (2.12)

where the phase function is
X
{0 (x,2,t) ='/~ U0 (x)ax + 80 (xp)z - ey (2.13)

and A(x1) is a complex amplitude modulation function. The dispersion relation also becomes a function of
Xa®
E

«0) _ Q(O)(a(o)’3(0)5x1) . (2.14)

The non-parallel theories as developed by Bouthier, Gaster, and Saric and Nayfeh calcu%ate the dispersion
relation only to zeroth order, just as in the quasi-parallel theory. The next order (c') enters only as a
solvability condition of the first-order equations, This condition determines the function A(x1L

We shall use only the quasi-parallel theory in the remainder of this work. Consequently, all of the
zeroth-order quantities are calculated as functions of x in accordance with Egs. (2.12), (2.13) and
(2.14). However, the quasi-parallel theory cannot determine the quantity A(x1), and this is simply set
equal to the initial amplitude Ao. In the non-parallel theory, the product Al is a unique quantity,
independent of the normalization of the elgenfunetion fi, that gives a precise meaning to the amplitude of
the flow variable §i as a function of ¥y and permits direct comparisons of theory and experiment. In the
quasi-parallel theory, only the contribution to the amplitude that comes from the imaginary parts of o,B
and w can be accounted for. The corrections due to the function A(x,) and the x dependence of the
eigenfunctions are outside of the scope of the theory. This lack of physical reality in the quasi-
parallel theory introduces an uncertainty in the calculation of wave amplitude and complicates comparisons
with experiment. More on the use of the quasi-parallel theory can be found in Seection 2.6.

2.3 Tenmporal and spatial theories

If 0 and B are real, and o is complex, the amplitude will change with time; if o and B are
complex, and ® is real, the amplitude will change with x. The former case is referred to as the temporal
amplification theory; the latter as the spatial amplification theory. If all three quantities are
complex, the disturbance will grow in space and time., The original, and for many years the only, form of
the theory was the temporal theory. However, in a steady mean flow the amplitude of a normal mode is
independent of time and changes only with distanee, The spatial theory, which was introduced by Gaster
(1962,1963,1965), gives this amplitude change in a more direct manner than does the temporal theory.

2.3.1 Temporal amplification theory
With o = wptloey and o and B real, the disturbance can be written
u(x,y,z,t) = ﬁ(y)exp(wit)exp[i(fo};lx + Bz - w,t)] . (2.15)
The magnitude of the wavenumber vector K is
k = (a2 4+ g2yV/2 | (2.16)
and the angle between the direction of ; and the x axis is
¥ = tan~1(8/a) . (2.17)

The phase velocity ¢, which is the velocity with which the constant-phase lines move normal to themselves,
has the magnitude

e=usk , (2.18)

=
and is in the direction of k. If A represents the magnitude of § at some particular y, say the y for
which { is a maximum, then it follows from Eq. (2.15) that

(1/8)(dasdt) = oy . (2.19)

We can identify @y as the temporal amplification rate. Obviously A could have been chosen at any y, or
for another flow variable besides u, and Eq. (2.19) would be the same. It is this property that enables
us to talk about the "amplitude" of an instability wave in the same manner as the amplitude of a water
wave, even though the true wave amplitude is a function of y and the particular flow variable selected,
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We may distinguish three possible cases:

wy < 0 damped wave ,
w; = 0 neutral wave , (2.20)°
Wy >0 amplified wave .
The complex frequency may be written
© = ke = k(e + icy) . (2.21)

The real part of ¢ is equal to the phase velocity ¢, and kEi is the temporal amplification rate. The

quantity ¢ appears frequently (as ¢) in the literature of stabilitx theory. However, it cannot be used in
the spatial theory, and since general wave theory employs only k and &, with the phase velocity being
introduced as necessary, we shall adopt the same procedure.
2.3.2 Spatial amplification theory
In the spatial theory, ® is real and the wavenumber components o and B are complex. With
o= o, + oy, 8 = Br + iBi q (2.22)
we can write the normal modes in the form
X X
u(x,y,z,t) = ﬁ(y)exp[-(f agdx + Biz)]exp[i(f a.dx + Brz - wt)] . (2.23)

=
By analogy with the temporal theory, we may define a real wavenumber vector k with magnitude

k= (o2 + g2V2, (2.24)

The angle between the direction of k and the x axis is

P o= tan'1(Br/onr) , (2.25)
and the phase velocity is
c = wk . (2.26)
Tt follows from Eq. (2.23) that
(178)dA/dx = =04 , (2,27

and we can identify -C. as the amplification rate in the x direction. In like manner -8; is the
amplification rate in tJhe z direction. Indeed, the spatial amplification rate is a vector like the
wavenumber vector with magnitude

o] = (o2 + gDV/2, (2.28)

and angle

v

tan™1(=By/-04) (2.29)

with respect to the x axis, The amplification rate -Bi is at this point a free parameter, and its
selection is left for future consideration.

For the special boundary layers to be considered in this work (see p. 5), we define a spatial wave to
be amplified or damped according to whether its amplitude increases or decreases in the x direction.
Therefore, the three possible cases which correspond to Eq. (2.20) are:

=04 <0 damped wave ,
-0y = 0 neutral wave , (2.30)
-0y >0 amplified wave .

2.3.3 Relation between temporal and spatial theories

A laminar boundary layer is a dispersive medium for the propagation of instability waves. That is,
different frequencies propagate with different phase velocities, so that the individual harmoniec
components in a group of waves at one time will be dispersed (displaced) from each other at some later
time. In a conservative system, where energy is not exchanged between the waves and the medium, an
overall quantity such as the €nergy density or amplitude propagates with the group velocity. Furthermore,
the group velocity can be considered a property of the individual waves, and to follow a particular normal
mode we use the group velocity of that mode. Because of damping and amplification, instability waves in a
boundary layer do not constitute a conservative system, and the group velocity is in general complex.
However, some of the ideas of conservative systems are still useful. If we consider an observer moving at
the group velocity of a normal mode, the wave in the moving frame of reference will appear to undergo
temporal amplification, while in the frame at rest it undergoes spatial amplification.
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Thus we can write

d4/dt = Cpd/dxg , (2.31)

>
where in this argument Cr is the ma%nitude of Cr' the real part of the group velocity vector —6, and x_, is
the coordinate in the direction of pe Therefore, if w; is the temporal amplification rate, the spa%ial
amplification rate in the direction parallel to Er is immediately given to be

=(%4)p= wg/C, o (2.32)

The problem of converting a temporal to a spatial amplification rate was first encountered by
Schlichting (1933a), who used the two-dimensional version of Eq. (2.32) without comment, The same
relation was also used later by Lees (1952), and justified on intuitive grounds, but the first
mathematical derivation was given by Gaster (1962) for the 2D case, and the relation bears his name.
Gaster's derivation is straightforward and can be generalized to three dimensions with the result given
above in Eq. (2.32). It is essential to note that the Gaster relation is only an approximation that is
valid for small amplification rates. Within the approximation, the frequency and wavenumber of the
spatial wave are the same as for the temporal wave. If we use the complex group velocity in the above
derivation, we arrive at the separate transformations for constant frequency and constant wavenumber
obtained by Nayfeh and Padhye (1979) from another point of view. In this approach, Egq. (2.32) corresponds
to a transformation of constant wavenumber.

We can also make use of Eq. (2.32) to arrive at a useful result for spatial waves, The same argument
that led to Eq. (2.32) also applies to a component of the group velocity. Therefore,

-(°‘1)$ = ©4/Cpeos(V ~ ) , (2.33)

where -(cxi)- is the spatial amplification rate in the arbitrary direetion@. The quantity 4)1,, is the real
part of the’ complex group velocity angle ¢ defined by

Ck=Cecosp , C,=Csiny , (2.34)
>

where Cx and Cz are the complex x and z components of E, and C is the complex magnitude of C, Eliminating

wy/C,, by Eq. (2.32), we arrive at

(0‘1)‘; = (ai)g/cos@ -6 . (2.35)

This relation, which may appear rather obvious, is not a general relation valid for two arbitrary angles.
It is only valid when one of the two angles is ¢r. When both angles are arbitrary, a more complicateg
relation exists and has been derived by Nayfeh and Padhye (1979). There is also a small change in k
unless the group-velocity angle is real. We might close this subject by noting that while the various
Nayfeh-Padhye transformation formulas use the complex group-velocity, they too are not exact because the
group velocity is considered to be constant in the transformation. We recommend to the interested reader
to examine the instructive numerical examples given by Nayfeh and Padhye.

2.4 Reduction to fourth~order systenm

Equations (2.7) constitute a sixth-order system for the variables &, ¥, &, p, D, DA, as can be shown
by rewriting them as six first-order equations. This system may be reduced to fourth order for the
determination of eigenvalues. One approach is to multiply Eq. (2.7a2) by o and Eq. (2.7c) by R and add,
and then multiply Eq. (2.7c) by & and Eq. (2.7a) by B and subtract, to arrive at the following system of
equations for the variables a@+pd, ¥, ofi-gfi, and f:

1(0U+BH=w) (0048 H) + (aDU4HRDN)¥ = -i(a2482)P +% 02 - (a®42)1u6 +3 %), (2.36a)
1(aU+BW-w)% = -Dp +% (0% - (2+p2)1% (2.36b)
1(a0+BH-0) (2R-BD) + (WDW-BDDIT = = [D2 - (u24¢2)1(cfpD) (2.36c)
1(ai+pW) + DY = 0 , (2.364d)

where Eqs. (2.7b) and (2.7d) have been duplicated for convenience as Egs, (2.36b) and (2.36d). The point
to note is that Eqs. (2.36a), (2.36b) and (2.36d) are a fourth-order system for the dependent variables
oli+p%, ¥ and P. The fourth variable of this system is qDU+8D@. The dependent variable o @-gfi appears only
in Eq. (2.36c). Therefore, we may determine the eigenvalues from the fourth-order system, and 1if
subsequently the eigenfunctions & and # are needed, they are obtained by solving the second-order equation
(2.36¢).

2.4.1 Transformations to 2D equations - temporal theory

The above equations are the ones that we will use, but they also offer a basis to discuss some
transformations that have been used in the past. If o and B are real, the interpretation of the
equations is evident. Equation (2.36a) is the momentum equation in the direction parallel to ﬁ, and Eq.
(2.36¢) is the momentum equation in the direction normal to ¥ in the x,z plane. Indeed, if we use the
transformations



30 =aU +BW , W zaW -BU , (2.37a)
i zal+B8 , G =af -BA , (2.37b)
8% =02 +p?2 , (2.37¢)

and leave w, R, ¥ and & unchanged, Eqs. (2.36) become

1(6-0)d + D09 = 5p + 3 [0? - &%T0 (2.38a)
1(30-0) 9 = -pp + 3 [0? - G20, (2.38b)
1(30-)# + DY = L? 62w , (2.38¢)
idu + D¥ =0 . (2.384)

These transformed equations are of the form of Egs. (2.7) for a two-dimensional wave (8=0) in a two-
dimensional boundary layer (W=0) except for the presence of Eq. (2.38¢c). We may observe from Eq. (2.7¢)

that even with =0, a W velocity component will exist whenever there is a W because of the vorticity
production term DW¥.

Thus in a 3D boundary layer with velocity profiles (U,W) at Reynolds number R, the eigenvalues of an
oblique temporal wave can be obtained from the eigenvalues of a 2D wave of the same frequency in a 2D
boundary layer at the same Reynolds number with the velocity profile of the 3D boundary layer in the
direction of the wavenumber vector. The key result that it is the latter velocity profile that governs
the instability was obtained by Stuart [Gregory et al. (1955)] in his classic study of the stability of
three-dimensional boundary layers, and by Dunn and Lin (1955) [see also Lin (1955)] in their study of the
stability of compressible boundary layers. We shall refer to this velocity profile as the directional
profile,

A slightly different transformation was employed by Squire (1933) and bears his name. Squire's
original transformation was for a 2D boundary layer and the Orr-Sommerfeld equation (see Section 2.5.1),
but a generalization valid for a 3D boundary layer is

U=U+Wtan) , W=W-=0Utanp , (2.39a)
u=0+ & tany , w=#%-1 tanp , (2.39b)
& =a2+82 , G/ =ala , GR=aR , (2.39¢)
A2 = pm® , VA = va . (2.394)

When Eqs. (2.39) are substituted into Eqs. (2.36), the resultant equations are the same as Eqs. (2.38)
except that w, R, ¥ and p are replaced by the corresponding tilde quantities., Thus the transformed
equations, except for the W equation which does not enter the eigenvalue problem, are again in 2D form,
but now the Reynolds number has also been transformed to the new coordinate system. This transformation
relates the eigenvalues of an oblique temporal wave of frequency w in a 3D boundary layer with velocity
profiles (U,W) at Reynolds number R to a 2D wave of frequency w/cosy in a 2D boundary layer at Reynolds
number Rcosy with veloecity profile U+Wtany. It can be interpreted as the same rotation of coordinates as
in the transformation of Eg. (2.37) plus the redefinition of the reference velocity from U;’f to Ur’feosw.

For a 3D boundary layer, the generalized Squire transformation is merely a different way of doing
what has already been accomplished by Eqs. (2.36). However, for a two-dimensional boundary layer (W=0),
which was the case considered by Squire, U = U and the dimensionless veloeity profile is unchanged by the

" transformation. This means that numerical stability results for oblique temporal waves can be immediately
obtained from known results for 2D waves in the same velocity profile. Furthermore, since R = Reosy, the
smallest Reynolds number at which a wave of any frequency becomes unstable (minimum critical Reynolds
number) must always occur for a 2D wave. This is the celebrated Squire theorem. It applies only to the
minimum critical Reynolds number and not to the critical Reynolds number of a particular frequency, for
which instability may well occur first for an oblique wave., It should also be noted that the theoren
applies only to a self-similar boundary layer where the velocity profile is independent of R.

2.4.2 Transformations to 2D equations - spatial theory

When o and B are complex, the interpretation of the transformation equations (2.37) as a rotation
of coordinates is lost, because the transformed veloclty profiles are complex. There is one exception,
however. In general, the quantity a/3, which for a temporal wave is cosy, is complex. However, if ai/ﬁf
Otr/ Bx" that is if the spatial amplification rate vector is parallel to the wavenumber vector, ¢ /cis still
real and equal to cosy. Thus it would appear that the elgenvalues of a spatial wave could still be
calculated from the 2D equations in the tilde coordinates. Unfortunately, this expectation is not
correct. When o and £ are real,

a= dcosy , (2.50)
but there is no justification for applying Eq. (2.10) separately to the real and imaginary parts of a
complex o when a/0 is complex. We are able, however, to derive the correct transformation rule from Eq.
(2.35). Withy=1y and &i = (ai)q,’

(=04)g = =03 cos(h=dp) (2.41a)

and with ¥ = 0,



=0 = (=04)p/cosdy, . {2.41pb)

Eliminating (-Gi)g, we obtain

- = -&1 cos(y - ¢}/ cosg, . (2.41¢)

Consequently, Eq. (2.40) can be used for o, only when the real part of the group-velocity angle is zero.
There is also a small shift in the wavenumber vector whenever ¢i # 0.

An alternative procedure for spatial waves is to use the equations that result from the
transformations of Eq. (2.39), but to not invoke Eq. (2.40) when o/dis complex. The quantities R and @
are complex, as are J and W for a 3D boundary layer, but this causes no difficulty in a numerical
solution., Such a procedure, which amounts to a generalized complex Squire transformation, was
incorporated into the JPL viscous stability code VSTAB/VSP. The approach with Egs. (2.36), which has the
advantage that no transformations are needed in determining the elgenvalues, is used in the newer JPL
stability codes VSTAB/3D, VSTAB/AF and SFREQ/EV. It should be noted that even in the spatial theory, the
governing real velocity profile is the profile in the direction of k.

2.5 Special forms of the stability equations
2.5.1 Orr-Sommerfeld equation

A single fourth-order equation can be derived from Egs, (2.36) by eliminating o(+p@ from Eq. (2.36a)
by (2.36d), and, after differentiation eliminating DP by (2.36b). The result is

02 - (22482)1%¢ = 1R{(aU+BW-0)[D? = (aP+82)] - (aD2U+BD2W)}S (2.42)
with the boundary conditions
¥(0) = 0, D%#(0) = 0 ,
¥(y) > o0, D¥(y) > 0 as y+ = ., (2.43)

When W=0, Eq. (2.42) reduces to the equation for a 2D boundary layer obtained by Squire (1933). When in
addition g =0,

(0% - a2)2 ¢ = 1R[(aU~w)(D? - & 2) - aD?ul% . (2.44)

This is the Orr-Sommerfeld equation and is the basis for most of the work that has been done in
incompressible stability theory. It is often derived from the vorticity equation, in which case ¥ is the
eigenfunction of the stream function. The Orr-Sommerfeld equation is valid for a two-dimensional wave in
a two-dimensional boundary layer. However, the generalized Squire transformation, Eq. (2.39), reduces the
3D equation (2.42) to Eq. (2.44) in the tilde coordinates, Consequently, for 3D boundary layers all
oblique temporal waves can be obtained by solving a 2D problem for the renormalized velocity profile in
the direction of the wavenumber vector, and when the boundary layer is two~-dimensional, for the same
velocity profile. The 2D Orr-Sompmerfeld equation and the same transformation can also be used for spatial
oblique waves, but in this case R is complex, and for a 3D boundary layer so is U, The inviscid form of
the complex Squire transformation was used by Gaster and Davey (1968) for an unbounded 2D shear flow, and
the complete viscous form by Gaster (1975) for a Blasius boundary layer. When one is not trying to make
use of previously computed two-dimensional eigenvalues, it is perhaps simpler to use Eq. (2.42) to
calculate 3D eigenvalues as needed, thus avoiding transformations in R and w.

2.5.2 System of first-order equations
There are a number of stability problems that cannot be reduced to a fourth-order system, and
therefore are not governed by the Orr-Sommerfeld equation. A more flexible approach is to work from the
outset with a system of first-order equations. With the definitions
Zy = ofl + 84, Z, = oDl + BDR, Zg = Y, z,=9,
Ig = oW -~ 8, Zg = oDd - BDE , (2.45)

Eqs. (2.36) can be written as six first-order equations:

DZy = Z, , (2.46a)
Dz = [0+ PriR(aU+3U=0) 12y + R(DUKEDH)Z3 + 1R(o2+E2)z, (2.46b)
DZ3 = =~iZy , (2.46¢c)
Dy = ~(/RZy - [L(aUsW=w) + (aP+?)/R] 25 , (2.464)
DZg = Zg , (2.46e)
DZg = (4DW-3DU)RZq+ [0c2+82+iR(ocU-18w-w)]Zs . (2.46¢)
The boundary conditions are
2¢0) =0,  Z3(0) =0, Z5(0) = 0 ,

Zi(y) >0, Z3(y) > 0, Zg(y) > 0as y» = . (2.47)
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The fact that the first four of Eqs. (2.46) do not contain Zp or Zg confirms that eigenvalues can be
obtained from a fourth-order system even though the stability equations constitute a sixth-order system.
It is only the determination of all the eigenfunctions that requires the solution of the full sixth-order
system., The above formulation is applicable when o and B are complex as well as real, and to 3D as well
as 2D boundary layers. Only the transformations of Eq. (2.37b) enter in this formulation, and then only
in the definitions of the dependent variables Z,, Z,, 25 and Z6' No transformations are involved in the
determination of the eigenvalues. Another polnt %o note is that only the first derivatives of U and W
appear in Eqs. (2.46) instead of the second derivatives which are present in the Orr-Sommerfeld equation.

2.5.3 Uniform mean flow

In the freestream, the mean flow is uniform and Egs. (2.46) have constant coefficlents. Therefore,
the solutions are of the form

2y = aBexpOyy) ,  (1=1,6) , (2.48)

where the Z(i) are the six-component solution vectors, the >‘i are the characteristic v?gues (the term
eigenvalue is reserved for thed,p, wwhich satisfy the dispersion relation), and the A ) are the six-
component characteristic vectors [not to be confused with the wave amplitude A in Eq. (2.12)]. The
characteristic values occur in pairs, and are easily found to be

>\1,2 = 3248212 (2.49a)
Ay = 02424 1R(0U,+8W,-0) 1172 (2.49b)
A6 = My (2.49¢)
where U1 and w, are the freestream values of U(y) and W(y). Only(t'ine upper signs satisfy the boundary
conditions at y > «. The components of the characteristic vector A are
A(lﬂ = -1(a248)1/2 | (2.50a)
A%” = 1(a2+82) , (2.50b)
A(31) =1, (2.50¢)
A1) = 1(ayapiy-0)/ (PP V2 (2.504)
A(51) =0, A(61) =0 . (2.50e,£)

For real o, B and « this solution is the linearized potential flow over a wavy wall moving in the
direction of the wavenumber vector with the phase velocity w/k. It can be called the inviscid solution,
although this designation is valid only in the freestream.

The components of the characteristic vector A(3) are

A3 -1, (2.51a)
A$3) = [024p2iR(a 48U, =) 112 (2.51b)
A83) = 1/[024B2-1R(aT 48U, 0)11/2 (2.51c)
A23) =0, A§3) =0, A(63) =0. (2.51d,e,f)

This solution represents a viscous wave and can be called the first viscous solution.

The characteristic vector A(s) is a second viscous solution, and its components are

A§-5) =0, Ag5) =0 , (2.52a,b)
(5) - (5)

8 =0, al¥ =0, (2.52¢,4d)
AgS) = 1 5 (2-523)
a85) = -[o24p2eaR(aU; 480 -0) 112 (2.52f)

The three linearly independent solutions A(1), A(3) and A(s) are the key to the numerical method that we
will use to obtain the eigenvalues, as they provide the initial conditions for the numerical integration.

We can observe that the second viscous solution can also be valid in the boundary layer as a pure
mode if Z4, Z3 and Zy are all zero. This follows from Egs. (2.46). In the notation of Eq. (2.37b), the
only non-zeré flow variable, Z is ¢w, where in the temporal theory w is the eigenfunction of the
fluctuation velocity normal to "k. But sincen= 3w/3x - 3u/9dz is the fluctuation vorticity component
normal to the wall, 25 is also -ifj, where {] is the eigenfunction of n. This interpretation is valid for
both the temporal and spatial theories. The eigensolutions of the second-order equation (2.46f) with Z, =
0 satisfy the boundary condition 7(0) = 0 and give the vorticity modes in the boundary layer. These modes
were first considered by Squire (1933), and were proven by him to be always stable. Recently it was shown
by Herbert (1983a,1983b) that the Squire modes provide an important mechanism of subharmonic secondary
instability at low, but finite, amplitudes of a primary 2D instability wave.



2,6 Wave propagation in a growing boundary layer

We have already discussed some aspects of this problem in Section 2,2, and we have chosen to use the
quasi-parallel rather than the non-parallel theory. 1In the quasi-parallel theory, the normal-mode
solutions are of the form

u(x,y,z,t) = Aoﬁ(y;x)exp[ie(x,y,z,t)] n (2.53)

with similar expressions for the other flow variables, The slowly varying amplitude A(x) of the non-
parallel solution Eq. (2.12) has been set. equal to the constant AO, and

X
0 (x,2,t) =fa(x)dx + B(x1)z - m(x1)t 5 (2.54%)

Equation (2.54) is the same as Eq. (2.13). We have left 8 and & as functions of the slow scale ¥q in
order to make it clear that 96/0x =a, just as for strictly parallel flow., The eigenvalues a,B and w
satisfy the local dispersion relation Eq. (2.14), and the elgenfunction G(y;x) is also a slowly varying
function of x. Consequently, at each x a different elgenvalue problem has to be solved because of the
change in the boundary-layer thickness, or velocity profiles, or, as is usually the case, both., The
problem we must resolve is how to "connect" the possible eigenvalues at each x so that they represent a
continuous wave train propagating through the growing boundary layer.

In a steady boundary layer, which is the only kind that we shall consider, the dimensional frequency
of a normal mode 1s constant. For a 2D wave in a 2D boundary layer, g = 0, and the complex wavenumber o
in the spatial theory, or the real wavenumber o and the imaginary part of the frequency w. in the
temporal theory, are obtained as eigenvalues for the local boundary-layer profiles, The only prob]].em here
is the relatively minor one of calculating the wave amplitude as a function of x from the amplification
rate, and we shall discuss this in. Section 2.6.2.

2.6.1 Spanwise wavenumber

When the wave is oblique,B # 0, and it is not obvious how to proceed, According to the dispersion
relation, o is a function of B as well as of x. How do we choose B at each x? The answer is provided
by the same procedure as used in conservative wave theory. When we differentiate Eq. (2.54) with respect
to x (not x1) and z, we obtain

ae/ax = O, 30 /3z = B, (2-553)
or

grado = kg , (2.55b)

where Kc is the complex vector wavenumber, Thus it follows directly that

Vxk,=0, (2.55¢)

and ch is irrotational. This condition is a generalization to a nonconservative system of the well-known
result for the real wavenumber vector in conservative kinematic wave theory.

In the boundary layers we will consider here, the mean flow is independent of z. Consequently, if we
restrict ourselves to spatial waves of constant B at the initial X, they can be represented by a single
normal mode because the eigenvalue o will also be independent of =z, Therefore, according to Egq. (2.55¢)
the sought-after downstream condition on B is

g = const, (2.56)

One caution is that if the reference length L' is itself a function of x, £3 it will be if L* = 6% for
example, the argument has to be slightly modified and Eq. (2.56) refers to 8" rather than to B8 .,

It still remains to speeify the initial value of B . Naturally occurring instability waves in a
boundary layer will be a superposition of normal modes, with a spectrum over both w and 8 that will
depend on the particular origin of the waves., It is probably only in a controlled experiment with a
suitable wavemaker that a single normal mode can be excited, For example, the vibrating ribbon first used
by Schubauer and Skramstad (1947) in their celebrated experiment excites a spatial 2D normal mode with the
frequency of the ribbon. It is also possible to conceive of wavemakers that excite single oblique normal
modes in boundary layers which are independent of z. Such normal modes will have an initial Br which
matches that of the wavemaker, and, because the wave can grow only in x, the initial B, must be zero.
These normal modes are well-suited for use in stability calculations for the estimation of jf:he location of
transition. In the calculations, Br is assigned as a parameter, B; is zero, and Eq. (2.56) controls the
downstream values of Br' Not only do these normal modes represent p'}qysical waves that can be produced by
a suitable wavemaker, but they are also convenient to use in all calculations of normal modes, such as
transition prediction, where we are interested in the largest possible growth of any normal mode, or the
point-sourece calculations of Section 7. In earlier work on two-dimensional planar boundary layers, some
results from which will appear in later Sections, the angle | was chosen as the parameter to hold
constant, rather than Br, as the wave propagates downstream. Although [ is nearly constant in such
boundary layers, it changes enough so that the assumption of constant | is not equivalent to Eq. (2.56).
In the work on three-dimensional boundary layers presented in Sections 13 and 14, Eq. (2.56) is applied to
the spanwise wavenumbers, but the direction of the spatial amplification rate is either parallel to the
local potential flow, or, occasionally, in the direction of the real part of the group-velocity angle,

2.6.2 Some useful formulas

It is worthwhile at this point to list some formulas that will be of use for stability calculations
in growing boundary layers., Only 2D boundary layers are considered here; 3D boundary layers are taken up
separately in Part C. First, we choose as the length scale,
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s [\)"x"/uf(x")]‘/2 , (2.57)

which is the usual length scale of the Falkner-Skan family of boundary layers, and of many nonsimilar
boundary-layer solutions. Other length scales that have been used are the boundary laye; tQickness, the
displacement thickness, and the inverse unit Reynolds number. The velocity scale is Ul(x ), the local
veloeity at the edge of the boundary layer. With these choices, the Reynolds number in the stability
equations is

®, %
R= 07N L0 = o122 et/ (2.58)
The dimensionless coordinate normal to the wall,

LK
y=(y/x)R, (2.59)
is the usual independent variable of boundary-layer theory.

The dimensionless quantities o, 8, w, R and y referenced to L' may be converted to other length
scales, such as displacement or momentum thickness, by multiplying by the dimensionless (with respect to
L") displacement or momentum thickness. The latter quantities are almost always obtained as part of a
boundary-layer calgula}ion. To convert @, B and w to dimensionless quantities based on the inverse unit
Reynolds number v /Ul’ it is only necessary to divide o, Band w by R.

The dimensional ecircular frequency af of a normal mode is constant as the wave travels downstreanm,
but the dimensionless frequency

® = w*L*/uI , (2.59)
is a function of x. It has become almost standard to use
F = m*v,*/u'iz = w/R (2.60)

in place of w as the dimensionless frequency. However, F is also a function of x for anything but a
flat-plate boundary layer. For the Falkner-Skan family of velocity profiles, the dimensionless velocity
gradient,

m = (x‘/U;)(dUI/dx’) , (2.61)

is constant and related to the usual Hartree parameter Bh (the subscript h is used to avoid confusion with
the wavenumber component R), by

By = 2m/(m+1) . (2.62)
The variable dimensionless frequency for constant m' is
F(R) = F(Ry) (Ry/R)MD/ (m¥1) (2.63)

where RO is the Reynolds number at the initial x station. When a stability code can handle several
frequencies at once, it is more convenient to use some fixed velocity as the reference velocity so that F
will remain constant for each frequency. For the nonsimilar boundary layers on airfoils, the JPL
stability codes use the velocity in the undisturbed freestream.

With L' a function of x', the irrotationality condition Eq. (2.56) applies ;o the dimensional
spanwise wavenumber. For the Falkner-Skan family, the dimensionless B for constant 3 is given by

B(RI/B(Ry) = (R/Rg) (1-m)/(1+m) (2.64)

We note that for a Blasius boundary layer (m=0), B increases linearly with R. The dimensional wavenumber
o, is almost, but not quite, constant, because there is a small increase in the phase veloecity with
increasing R. As a result, the wave angle U increases as the wave travels downstream. This increase is
at most a few degrees for a planar boundary layer. However, on an axisymmetric body, it is the
circumferential wavenumber per radian that is constant. Thus, neglecting the small decrease ina_, tany
is inversely proportional to the radius. For instance, on a cone, where the radius is increasfng, an
oblique wave is rapidly converted to a nearly 2D wave as it travels downstream; on a body with decreasing
radius, the effect is reversed.

2.6.3 Wave amplitude

In the quasi-parallel theory, the amplitude ratio of a spatial normal mode of frequency w* with Bi H
0 is obtained from the imaginary part of the phase function Eq. (2.54):
%

1n(A/Ay) = _fxa'fdx' (2.65)
* 1
*0

in accord with Eq. (2.27L* Here fO is tge amplitude at the initial station xg, and the integral %s
evaluated with constant w and g . If Xg is the s%art of the instability region for the frequency w ,
ln(A/AO) is the N factor that is the basis of the e method of transition prediction. As discussed in
Section 2.2, A may represent any flow variable at any y location., It may be helpful to think of A as,
say, the maximum value of jﬁ[in the boundary layer, as this 1s a quantity that can be determined
e§pe§imentally. Along with the amplitude, the time-independent phase relative to the initial phase at
X ,z_ 1is

0’70

*
X‘ * * L R 4
X(x) = x(xg) =»[gufdx +Bp (z-2)) . (2.66)
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The phase is a vital quantity in superposition calculations (Section 7), but otherwise it is usuvally not
computed,

For the Falkner-Skan family, the amplitude ratio in terms of R is

R
In(a/Ag) = - [2/(m+1)]f agdR , (2.67)
R

where the integrand oy is caleula&e@as an eigenvalue with the F of Eq. (2.63) and the B of Eq. (2.64).
For a nonsim}lar boundary layer, Ul(x ) 18 not an analytical function, and the integration has to be with
respect to x', A formula that is used in the JPIL stability codes is

X
1n(a/A,) = -nc“/' (og/my (ud/uhyax, (2.68)
(XC)O

where ay is based<n1}h9 lgcal L'; U; is the velocity of the undisturbed freestream; X, is x'/c', where e'
is the ehqrd; Re K chh/v is the full chord Reynolds number; and the integral is again evaluated for
constant w and B.

3. INCOMPRESSIBLE INVISCID THEORY

The system of first-order equations (2.46), or the Orr-Sommerfeld equation in either 2D or 3D form,
Eq. (2.42) or (2.44), governs the motion of linear waves at finite Reynolds numbers, With the highest
derivative of ¢ in the Orr-Sommerfeld equation multiplied by 1/R, which is usually a small quantity, it is
apparent that mathematical and numerical methods of some complexity are required to obtain the eigenvalues
and eigenfunctions. On the other hand, if viscosity is considered to act only in the establishment of the
mean flow, but to have a negligible effect on the instability waves, the equations take on a much simpler
form. For example, the 2D Orr-Sommerfeld equation reduces to

[(al-w) (D2=02) ~ aD?UI% = 0 . (3.1)

This is the fundamental equation of the inviscid stability theory, and is usually referred to as the
Rayleigh equation. It is of second order and so only the two boundary conditions

$(0) =0, %(y)> 0asy>x, (3.2)
can be satisfied. The normal velocity at the wall is zero, but the no slip condition is not satisfied.

The inviseid theory has dealt largely with 2D temporal waves. Since all of the essential ideas are
included within this framework, we shall adopt the same procedure in this Section. The Rayleigh equation
(3.1) has a singularity at y = Yo where oU = w. This singularity is of great importance in the theory,
and is called the critical layer, or critical point. It does not occur in the Orr-Sommerfeld equation,
but even so the Rayleigh equation is simpler to work with than the Orr-Sommerfeld equation, and an
extensive inviscid stability theory has been developed over the past 100 years. The early work was mainly
by Rayleigh (1880,1887,1892,1895,1913), but a great number of authors have made contributions in more
recent times. An excellent review of the subject may be found in the article by Drazin and Howard (1966).
Only those aspects of the theory which are necessary for a general understanding, and have relevance to
boundary-layer flows, will be taken up in this Section. We also restrict ourselves to boundary layers
with monotonic velocity profiles. These profiles have only a single eritical layer. We defer until
Section 12 the discussion of the important directional velocity profiles of 3D boundary layers which have
two critical layers.

The inviscid theory has been used for two purposes. One is to provide two of the four independent
solutions that are needed in the asymptotic viscous theory. The other is as an inviscid stability theory
per se. We shall not discuss the asymptotic theory, so it is only the second use that is of interest
here., Not many numerical results have been worked out from the inviscid theory for incompressible
boundary layers. However, one of the two chief instability mechanisms is inviseid in nature, so that some
knowledge of the theory is essential for an understanding of boundary~layer instability. The presentation
here will also serve as a necessary prelude to compressible stability theory, where the inviscid theory
has a larger role to play.

3.1 Inflectional instability
3.1.1 Some mathematical results

There are a number of general mathematical results that can be established in the inviseid theory, in
contrast to the viscous theory where few such results are known. We shall give two which demonstrate that
no unstable or neutral temporal waves can exist unless the veloecity profile has a point of inflection.
The first result concerns unstable waves. If we multiply Eq. (3.1) by ¢, the complex conjugate of ¢, and
then subtract the complex conjugate of the resultant equation, we obtain

D(v'D6-908") - 216,0%0%(2/|0b - w[?= 0 . (3.3)

The first term of Eq. (3.3) can be made more meaningful by relating it to the Reynolds stress, which, in
dimensionless form, is o)
m/a

T = - (a/ZnJ uv dx . (3.4)
0
If we recall the necessity of first taking the real parts of u and v before multiplying, and make use of
the continuity equation, we obtain

Dt = w;D20¢v2y/ ol - 0 |2, (3.5)
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where (1/2)|G] exp (Zmit) has been replaced by <v2>, the average over a wavelength of the square of the
velocity fluctuation v.

Eq. (3.5) is a special case of a formula derived by Foote and Lin (1950) [see also Lin (1954,1955) 1.
When Eq. (3.5) is integrated from y = 0 to infinity, the Reynolds stress at the wall and in the freestream
is zero by the boundary conditions. Therefore, since D2U = 0 in the freestrean,

%8
wif(<v2>D2U/]aU -oPyy=o0, (3.6)
0

wherejgis the dimensionless boundary-layer thickness. It follows from Eq. (3.6) that if Wy £ 0, D2U nust
change sign somewhere in the interval 0<y<y;. Consequently, it has been proven that the velocity profile
must have a point of inflection for there to be an unstable wave. This result was first obtained by
Rayleigh. Later, Fjortoft (1950) strengthened Rayleigh's necessary condition to DZU(U—US) < 0 somewhere
in the flow, where U, is the mean velocity at the inflection point. This condition is equivalent to
requiring that the modulus of DU have a maximum for there to be instability. It is always satisfied in a
boundary layer with an inflection point, because DU > 0 as y-« and ]DU|eannot only have a minimum. It
was subsequently proven by Tollmien (1935) that for most of the profiles which oeccur in boundary layers,
including 3D boundary layers, the condition DZU = 0 is also sufficient. Another result of Rayleigh, for
which the proof will not be given, established that the phase velocity of an unstable wave always lies
between the maximum and minimum values of U. This result was later generalized by Howard (1961) into an
elegant semicircle theorem which relates both a;/a and wi/d to the maximum and minimum values of U.

The second result concerns neutral waves. It follows from Eq. (3.5) that with wy = 0, the Reynolds
stress must be constant everywhere except for a possible discontinuity at the critical layer Yoo When Eq.
(3.5) is integrated across the boundary layer, the only contribution to the integral comes from the
immediate neighborhood of Yo Hence,

Uly +0)
T(¥g+0) = T(¥g=0) = - (D2U/DU) (<v2> 1im {wi/[(au_wr)2+wi]}du. (3.7)
70 Yy _-0)

The integration variable has been changed from y to U. 1In the limit ofCﬁi + 0, the integrand of Eq. (3.7)
acts as a delta function, and the intgegral has a value of m/0, Consequently,

T(yg#0) ~T(y=0) = (7/0) (D2U/DU) (<vo7>s (3.8)

Since’f(yc+0) and T(y,-0) are both zero by the boundary conditions, D2Uc must also be zero, and it has
been proven that a wave of neutral stability can exist only when the velocity profile has a point of
inflection, Furthermore, w /0 = Uc and the phase velocity of a neutral wave is equal to the mean
velocity at the inflection po{ht.

The chief analytical feature of the Rayleigh equation (3.1) is the singularity at ol =w. Sincew is
in general complex, so is y.. Of course the mean velocity U is real in the physical problem, but it may
be analytically continued onto the complex plane by a power-series expansion of U or by some other method.
Two approaches to obtaining analytical solutions of the inviscid equation are the power series in<12 used
by Heisenberg (1924) and Lin (1945), and the method of Frobenius used by Tollmien (1929). The two
solutions obtained by Tollmien are

T(y) = (y=y )Py (y-y5) (3.92)
T, (y) = Py(y=yg) + (DPU/DU) o (¥-y,)Py(¥=yo)log(y=¥,) » (3.9b)

where

Py(y-¥g) = 1 + (D20/2DU) (y=y) + (1/6)[D30/DU), + a1(y=y)2 + wuvs

(3.10)
Po(y-y,) = 1 + [(D3U/2DU), = (DPU/DUZ), + (1/2)021(3-y)2 + -+

The first solution is regular’é but 92 is not in general regular near y, because of the logarithmic term.
However, for a neutral wave DU, is zero, and in this one case 02 is also regular.

To summarize what we have learned in this section, for a velocity profile without an inflection
point, (e.g., the Blasius boundary layer), there can be neither unstable nor neutral waves (save for the
trivial solutiona= 0,0 = 0), When there is an inflection point, a neutral wave with a phase velocity
equal to the mean velocity at the inflection point can exist, and in boundary layers unstable waves with
phase velocities between 0 and 1 can and will exist,

3.1.2 Physical interpretations

The mathematical theory is complete in itself, and with the use of the Reynolds stress also makes the
physical consequences of an inflection point clear. However, there have been attempts to formulate
physical arguments that in some manner bring in the concept of negative stiffness, which is the way in
which one usually thinks about unstable wave motions. The first of these was by Taylor (1915), and
appeared as an addendum to a major paper in which he developed his vorticity transfer theory, He applied
this theory to deriving an expression for the vertical transfer of disturbance momentum, which immediately
showed that if DU is of the same sign everywhere, the disturbance momentum can only increase or decrease
everywhere, a situation incompatible with the inviscid boundary conditions. However, if DU changes sign,
then momentum can be transferred from one place to another without affecting the boundaries, thus
permitting instability. Later arguments made use of vorticity concepts. The most detailed is by Lin
(1945,1956), and is supported by a considerable mathematical development. Lighthill (1963, p. 92) gives
a very helpful presentation with three diagrams, and finally Gill (1965) has constructed an argument that
makes use of Kelvin's (1880) cat's eye diagram of the streamlines in the vieinity of an inflection point
to demonstrate that only a maximum in DU can cause instability. All of these presentations are worth
careful study.



3.2 Numerical integration

The analytical methods are not adequate for producing numerical solutions of the Rayleigh equation
except in certain special cases. Only direct numerical integration of Eq. (3.1) can produce solutions
accurately and quickly for the great variety of velocity profiles encountered in practice, There are at
least two methods available. In the first, which was developed by Conte and Miles (1959), the integration
is restricted to the real axis and is carried past the critical point by the Tollmien solutions. In the
second method, which was developed by Zaat (1958), the solution is produced entirely by numerical
integration, and the critical point is avoided by use of an indented contour in the complex plane., It is
as easy to perform the numerical integration along such a contour as along the real axis, provided the
analytic continuation of U away from the real axis is available. This approach, except for a difference
in the method of analytic continuation, was used by Mack (1965a) to integrate the compressible inviscid
equations. It was later extended to incompressible flow, and is incorporated into the JPL invisecid
stability code ISTAB.

For numerical integration, Eq. (3.1) is replaced by the two first-order equations for ¢ and f which
follow from Eqs. (2.36) when R - «:

o
!
]

[a/(al = ©)]J(DU¥+iaB) , (3.11a)

(=}
o
"

-i(aU-0)¥ . (3.11b)

The solutions in the freestream, where U = 1 and DU = 0, are

¥ = exp(~ ay) , (3.12a)

P = -1(1~w/a)expl- 0oyl , (3.12b)
where we have chosen the normalization to agree with Egs. (2.50). These expressions provide the initial
values for the numerical integration to start at some Y =Y4 >y. For chosen values of &« andw , + iwi,
the integration proceeds from ¥q to the wall along the real y axis and an indented rectangular contour
around the eritical point when necessary. The velocity U is continued on to the indented contour by a
power-series expansion in y - Yo The necessary derivatives of U are obtained from the boundary-layer
equations. A Newton-Raphson search procedure, in which any two of o, w,, wy are perturbed, is used to
find the eigenvalues, i.e., an o and o, + iw; for which the boundary condition #(0) = 0 is satisfied. If
& 1s held constant, then the Cauchy-l{iemann equations can be used to eliminate one perturbation because
the funetion {1(0) in the dispersion relation is analytic.

3.3 Amplified and damped inviscid waves
3.3.1 Amplified and damped solutions as complex conjugates

In the use of the inviscid theory in the asymptotic viscous theory, the choice of the branch of the
logarithm in Eq. ( 3.9b) constitutes a major problem. This same difficulty also shows up in the inviscid
theory itself, but in a much less obvious manner., Since DU > 0 for the type of boundary layer we are
considering in this Section, it follows that for an amplified wave (wi > 0) the critical layer lies above
the real y axis [(yc)i > 0]; for a damped wave (cui < 0) it is below the real axis [(yc)i' < 0]. For a
neutral wave (wi = 0), the eritical layer is on the real axis, but since D Uc = 0 the logarithmic term
drops out of Eq. (3.9b) and the solution is regular, With the critiecal layer located off the real axis
for amplified and damped waves, it would seem that there is nothing to hinder integration along the real
axis. Indeed, it can be seen by manipulating the inviscid equation (3.1) that if GP + 1\71 is a solution
for wr + 1w, then \71,. - i\')i is a solution for Wp = iw;. Thus amplified and damped solutions are complex
conjugates, and the existence of one implies the exi3tence of the other, From this point of view, the
criterion for instability is that w is complex, and the only stability is neutral stability with w real.
Since Eq. (3.6) applies for Wy < 0 as well as for w; > 0, neither amplified nor damped waves can exist
unless there is an inflection point, The Blasius oundary layer has no inflection point (except at y =
0), and according to this argument no inviscid waves are possible, amplified, damped or neutral (except

for o= 0, w= 0), But viscous solutions certainly exist; what happens to these solutions in the limit as
R>w?

3,3.2 Amplified and damped solutions as R >« limit of viscous solutions

The clarification of this point is due to Lin (1945), who showed that if the inviscid solutions are
regarded as the infinite Reynolds limit of viscous solutions, a consistent invisecid theory can be
constructed in which damped solutions exist that are not the complex conjugates of amplified solutions.
To achieve this result, integration along the real axis is abandoned for damped waves. Instead, the path
of integration is taken under the singularity just as it is for the inviscid solutions that are used in
the asymptotic viscous theory, and ln(y - yc) = ln[y - ycl- im for y < Yoo For damped waves, the effect
of viscosity is present even in the limit R > ©, and a completely inviscid solution cannot be valid along

the entire real axis. Lin's arguments were physical and heuristic, but a rigorous justification was given
by Wasow (1948),

It is also possible to arrive at Lin's result from a strictly numerical approach, In Section 3.2, no
mention was made of how to indent the contour of integration. The two possibilities are shown in Fig.
3.1 For an inviseid neutral solution (wi = 0), v is purely imaginary and 6 is real, It makes no
difference if the contour is indented beléw the real axis, as in Fig. 3.1a, or above, as in Fig, 3.1b.
The same eigenvalue o is obtained in either case. If u, # 0, the integration can be restricted to the
real axis. However, unless D2U = 0 somewhere in the boun&ary layer, there are no amplified solutions, or
their complex conjugates the damped solutions. But if we use contour (a) for damped waves, and contour
(b) for amplified waves, both solutions exist even with D2U # 0. Some eigenvalues computed for the
Blasius veloci profile are given in Table 3.1, where the eigenvalues have been made dimenisionless by
reference to L [Eq. (2.57)], which enters the inviscid problem through the boundary-layer similarity
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variable y = y'/L'. As can be verified from Eqs. (3.11), the solutions with w, - iw; and contour (a) are
related to the solutions with w, + iog and contour (b) by
9(a) 4 19(a) - ¢(b) _ 44(b) |

() 4 gp(@ - _p(®) , 45(P) (3.13)

Table 3.1 Inviscid eigenvalues of Blasius veloeity profile
computed with indented contours.

Contour o Wy wy X 103
(a) 0.128 0.0333 ~2.33
(b) 0.128 0.0333 2.33
(a) 0.180 0.0580 -6.80
(b) 0.180 0.0580 6.80

Which option do we pick, (a) or (b)? Since the neutral-stability curve for the Blasius profile is of
the type shown in Fig. l.la, waves of all wavenumbers are damped in the limit R~ «, Consequently, if the
inviseid solutions are required to be the R~ » limit of viscous solutions, it is evident that contour (a)
must be used, just as in the asymptotic theory and in agreement with Lin, Without an inflection point,
there are no inviscid amplified solutions., For a velocity profile with D2U =0 at Vg where the subscript
s refers to the inflection point, both amplified and damped waves exist for each contour, unlike the
Blasius case. The neutral wavenumber 1is og, and can be obtained with either contour. With contour (a),
the wavenumbers of the amplified waves are located below gy and the wavenumbers of the damped waves are
located above gl contour (b) gives the opposite results, Comparison with the viscous neutral-stability
curve, which is of the type shown in Fig. 1l.lb, shows that contour (b) must be rejected in this case also.

The damped solutions with contour (a) do not exist everywhere on the real axis. According to Lin
(1955, p. 136), there is an interval of the real axis in the vieinity of the critical layer where
viscosity will always have an effect even in the limit of R~ =, and where the inviscid solution is not a
valid asymptotic approximation to the viscous solution. In the final paragraph of his book, Lin remarked
that in this interval the viscous solution has an oscillatory behavior. This remark was confirmed
analytically by Tatsumi and Gotoh (1971), and verified numerically by Davey (1981) at an extremely high
Reynolds number using the compound matrix method.

As a numerical example of damped inviscid eigenvalues, Fig. 3.2 gives -0, the temporal damping rate,
as a function of o for the Blasius velocity profile. The calculation was performed along an indented
contour of type (a). The inviscid damping rates are, for the most part, much larger than the viscous
amplification rates. That damped inviscid eigenvalues calculated with a type (a) contour are the R->
limit of viscous eigenvalues was confirmed numerically by Davey in the paper mentioned in the preceding
paragraph, For o= 0,179, the énviscid eigenvalue is w/o= 0.32126-0.036711; the viscous eigenvalue
computed by Davey at R = 1 x 10° is w/a= 0,32166-0.036291.

y, NUMERICAL TECHNIQUES
4.1 Types of methods

Since the early 1960's, the asymptotic theories developed by Tollmien (1929) and Lin (1945) have been
largely superseded as a means of producing numerical results in favor of direct solutions of the governing
differential equations on a digital computer, The numerical methods that have been employed fall roughly
into three categories: (1) finite-difference methods, used first by Thomas (1953) in his pioneering
numerical work on plane Poiseuille flow, and later by Kurtz (1961), Osborne (1967), and Jordinson (1970),
among others; (2) spectral methods, used first by Gallagher and Mercer (1962) for Couette flow with
Chandrasekhar and Reid functions, and later improved by Orszag (1971) with the use of Chebyshev
polynomials; and (3) shooting methods, used first by Brown and Sayre (195L4). All of these methods have
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